Unit-5
 Kinematics of Gears
 Subject: Kinematics of Machinery

Mr. D. S. Lengare
Assistant Professor, Automobile Engineering Department Government College of Engineering \& Research, Awasari khurd.

Gears are the machine elements that transmit motion by means of successively engaging teeth.

Advantages :-

- It transmits exact velocity ratio
- It may be used to transmit large power
- It has higher efficiency
- It has reliable service
- It has compact layout
- It is used when the distance between driver \& follower is very small

Disadvantages :-

- Manufacturing of gears require special tools and equipments
- The error in cutting teeth may cause vibrations and noise during operation

Gear Classification

- Connecting Parallel Shafts

Spur Gears
Helical Gears / Herringbone Gears
Rack \& Pinion Gears

- Connecting Intersecting Shafts
- Bevel Gears
- Helical Bevel Gears

Connecting Non-parallel Non-intersecting Shafts Spiral Gears
Worm \& Worm Gear

- Used for parallel shafts Have straight teeth
- Suitable for low to medium speed application
- Relatively high ratios can be achieved (7)
- Steel, Brass, Bronze, Cast Iron \& Plastics

- Advantages: Spur gears are easy to find, inexpensive, and efficient.
- Limitations:

During engaging, the teeth collide, and this impact makes a noise. It also increases the stress on the gear teeth.
It cannot be used when a direction change between the two shafts is required.

Helical Gea

- Teeth are at an angle (Helix angle 7 to 230)
- Gradual engagement of teeth reduces shocks \& Stresses
- More smooth \& quiet operation
- Used for high speed transmission
- Tooth strength is greater because the teeth are longer
- Greater surface contact on the teeth thus carry more load than a spur gear
- Used in automobiles

lelical Gears

- Disadvantage:

-Longer surface of contact reduces the efficiency of a helical gear relative to a spur gear
-They induce axial thrust in one direction on bearing

- Two helical gears of identical pitch \& of opposite hand
- Axial thrust of two gears act in opposite direction, thus...
- Problem of axial thrust is eliminated

Rack \& Pinion Gears

- Rack: Straight Gear with infinite diameter
- Used to convert rotational motion to translational motion by means of a gear mesh
- Application: Rack and pinion steering system used on many cars in the past.
Used in machine tools

Used for intersecting shafts (90) in same plane

- Straight Bevel Gear / Spiral Bevel Gear

For one to one ratio

- Used to change direction

Spiral Gears

- Skew Gears / Crossed Helical Gears

- Used for Non-parallel \& Non-intersecting shafts
- Point contact between mating teeth
- Low load transmission

rm \& Worm Wheel

- Used for Non-parallel \& Non-intersecting shafts
- Large speed reduction upto 100:I
- Worm can easily turn the gear but...
- Gear cannot turn worm
- This locking feature acts as a brake
- Used in conveyor systems

(a) Extemal gearing.

(b) Intemal gearing.

Internal gears

Rack and pinion

(a) Spiral Bevel Gear

(b) Zerol Bevel Gear

Figure 3.20 : Straight Bevel Gears

Gear Tooth Terminology

- Pitch Circle : An imaginary circle which by pure rolling action would give the same motion as actual gear
- Pitch Circle Diameter : Diameter of pitch circle
- Pitch Point : Common point of contact between two pitch circles Pressure Angle: Angle between common normal to two gear teeth at the point of contact \& common tangent at pitch point
- Addendum: The radial distance between the PC and the top of the teeth
- Addendum Circle: Circle drawn from top of tooth \& concentric with PC
- Dedendum: The radial distance between the bottom of the tooth to PC
- Dedendum Circle: Circle drawn from Bottom of tooth \& concentric with PC
- Circular pitch (pc): Distance measured on circumference of PC from a point of one tooth to the corresponding point on next tooth

$$
\begin{aligned}
& \mathrm{D}=\text { Diameter of } \mathrm{PC} \\
& \mathrm{~T}=\text { No. of teeth }
\end{aligned}
$$

$$
p c=\frac{\pi D 1}{T 1}=\frac{\pi D 2}{T 2} \quad \text { OR } \quad \frac{D 1}{D 2}=\frac{T 1}{T 2}
$$

- Diametral pitch (Pd):The ratio of the number of teeth to PCD.

$$
p d=\frac{T}{D}=\frac{\pi}{p c}
$$

- Module (m): Ratio of Pitch circle Diameter (mm) to No. of Teeth

$$
m=\frac{D}{T}
$$

- Clearance: Difference between the dedendum of one gear and the addendum of the mating gear
- Total depth : Radial distance equal to sum of addendum \& dedendum (working depth plus clearance)
- Working depth : Depth of engagement of two gears, i.e., the sum of addenda of two mating gears
- Tooth Thickness : Width of teeth measured along PC
- Tooth Space: Distance between adjacent teeth measured along PC
- Backlash: Difference between tooth thickness and tooth space on PC
- Face of a tooth: Surface of gear tooth above $P C$
- Flank of a tooth: Surface of gear tooth below PC
- Top Land : Surface of top of tooth
- Face width : Width of gear tooth measured parallel to its axis
- Fillet Radius : connects root circle to profile of tooth
- Path of contact : path traced by a point of contact of two teeth frm beginning to end of engagement
- Length of path of contact : Length of common normal cut-off by addendum circles of wheel \& pinion
- Arc of contact : Path traced by a point on pitch circle frm beginning to end of engagement
- Arc of Approach : path of contact frm beginning of engagement to pitch point
- Arc of Recess : path of contact frm pitch point to end of engagement

of Gearing

O1,O2 - Centres of wheel $1 \& 2$ resp.
Q - Point of contact of two teeth
TT - Common tangent at the point of contact Q
MN - Common normal at the point of contact Q
$\mathrm{O}_{1} \mathrm{M}, \mathrm{O}_{2} \mathrm{~N}$ - Perpendicular to MN
QC - Direction of Q when considered on wheel 1
QD - Direction of Q when considered on wheel 2
$v_{1} \quad$ - Velocity of Q along QC
$v_{2} \quad$ - Velocity of Q along QD

of Gearing

If the teeth are to remain in contact, then... the components of velocities along the common normal MN must be equal
$\therefore v_{1} \cos \alpha=v_{2} \cos \beta$
$\left(\omega_{1} * O_{1} Q\right) \cos \alpha=\left(\omega_{2} * O_{2} Q\right) \cos \beta$
$\left(\omega_{1} * O_{1} Q\right) \frac{O_{1} M}{O_{1} Q}=\left(\omega_{2} * O_{2} Q\right) \frac{O_{2} N}{O_{2} Q}$
$\omega_{1} * O_{1} M=\omega_{2} * O_{2} N$
$\therefore \frac{\omega_{1}}{\omega_{2}}=\frac{O_{2} N}{O_{1} M}$

$$
\text { Also... } \Delta O_{1} M P \approx \Delta O_{2} N P
$$

$$
\therefore \frac{O_{2} N}{O_{1} M}=\frac{O_{2} P}{O_{1} P}
$$

$$
\frac{\omega_{1}}{\omega_{2}}=\frac{O_{2} N}{O_{1} M}=\frac{O_{2} P}{O_{1} P}
$$

of Gearing
Angular velocity ratio is inversely proportional to ratio of distances of point P from centres $\mathrm{O}_{1} \& \mathrm{O}_{2}$

OR

Common Normal at the point of contact Q intersects the line of centres at point P which divides the Centre distance inversely as the ratio of angular velocities

To have constant angular velocity For all positions of wheel, point P Must be the fixed point
(2)

"Common normal at the point of T contact between a pair of teeth must always pass through the pitch point"

city of Sliding

It is the velocity of one tooth relative to its mating tooth along the common tangent at the point of contact EC - velocity of point Q (on wheel 1) T along TT

$$
\begin{aligned}
& \triangle Q E C \approx O_{1} M Q \\
\therefore & \frac{E C}{M Q}=\frac{v}{O_{1} Q}=\omega_{1} \\
& E C=\omega_{1} * M Q
\end{aligned}
$$

ED - velocity of point Q (on wheel 2) along TT

$$
\begin{gathered}
\Delta Q E D \approx \Delta O_{2} N Q \\
\therefore \frac{E D}{Q N}=\frac{v_{2}}{O_{2} Q}=\omega 2 \\
E D=\omega 2 * Q N
\end{gathered}
$$

city of Sliding

Let,

$$
\begin{aligned}
& v_{s}=\text { Velocity of sliding at } Q \\
& v s=E D-E C=v 2 \sin \beta-v 1 \sin \alpha \\
&=\left(\omega_{2} * O_{2} Q\right) \frac{Q N}{O_{2} Q}-\left(\omega_{1} * O_{1} Q\right) \frac{M Q}{O_{1} Q} \\
&=\omega_{2} . Q N-\omega_{1} . M Q \\
&=\omega_{2}(Q P+P N)-\omega_{1}(M P-Q P) \\
&=\left(\omega_{1}+\omega_{2}\right) Q P+\omega_{2} . P N-\omega_{1} . M P \\
& B u t \ldots, \frac{\omega_{1}}{\omega_{2}}=\frac{O_{2} P}{O_{1} P}=\frac{P N}{M P} \\
& i . e ., \omega_{1} . M P=\omega_{2} . P N \\
& \therefore V_{s}=\left(\omega_{1}+\omega_{2}\right) Q P
\end{aligned}
$$

Velocity of sliding is proportional to distance of point of contact to pitch point

Forms of Teeth

1. Conjugate teeth
2. Cycloidal teeth
3. Involute teeth

Conjugate action

It is essential for correctly meshing gears, the size of the teeth (the module) must be the same for both the gears.

Another requirement - the shape of teeth necessary for the speed ratio to remain constant during an increment of rotation; this behavior of the contacting surfaces (ie. the
 teeth flanks) is known as conjugate action.

Drawback :-
 Difficulty to manufacture,
 Standardisation \&
 Cost of production

Tooth Profiles

Although many tooth shapes are possible for which a mating tooth could be designed to satisfy the fundamental law, only two are in general use: the cycloidal and involute profiles.

Cycliodal Profile

cliodal Profile

Epicycliodal Profile

Epicycliodal Profile

Hypocycliodal Profile

Hypocycliodal Profile

Involute Profiles

\square Generation of the Involute

Curve

This involute curve is the path traced by a point on a line as the line rolls without slipping on the circumference of a circle. It may also be defined as a path traced by the end of ${ }^{\text {INVOLUTE OF CIRCLE generated by unwinding circumference of circle }}$ path traced by the end of a string which is originally wrapped on a circle when the string is unwrapped from the circle. The circle from which the involute is derived is called the base circle.
 a Length of 360 degree invalute $=19.7$

Involute Profile

olute Profile

The portion of the Involute Curve that would be used to design a gear tooth

Involute Profile

http://auto.howstuffworks.com/gear8.htm

Cycliodal Profile

(a)

(b)

cliodal Profile

Involute Profile

Normal at any point of an involute is a tangent to the circle.

Involute Profile

Involute Profile

From similar triangles $0_{2} \mathrm{NP}$ and $\mathrm{O}_{1} \mathrm{MP}$.

$$
\therefore \frac{O_{1} M}{O_{2} N}=\frac{O_{1} P}{O_{2} P}=\frac{\omega_{2}}{\omega_{1}}
$$

radii of the two base circles,

$$
\begin{aligned}
& O_{1} M=O_{1} P \cos \phi, \\
& O_{2} N=O_{2} P \cos \phi
\end{aligned}
$$

Also the centre distance between the base circles,

$$
\begin{aligned}
O_{1} O_{2} & =O_{1} P+O_{2} P \\
& =\frac{O_{1} M}{\cos \phi}+\frac{O_{2} N}{\cos \phi} \\
& =\frac{O_{1} M+O_{2} N}{\cos \phi}
\end{aligned}
$$

Involute Profile

If Fis the maximum tooth pressure Tangential force.
$F_{\mathrm{T}}=F \cos \phi$
Radial or normal force $F_{\mathrm{R}}=F \sin \phi$.

Torque exerted on the gear shaft

$$
=F_{\mathrm{T}} \times r,
$$

omparison Of Involute \& Cycloidal

- Center distance between a pair of involute gears can be varied without changing velocity ratio
- The pressure angle from start of engagement to the end of engagement remains constant.Thus, smooth running of gears
- Center distance between cycloidal gears is to be kept constant to keep constant velocity ratio
- The pressure angle varies from start of engagement to the end of engagement.Thus, less smooth running of gears

Comparison Of Involute \& Cycloidal

- Teeth generated by single curve.Thus, easy for manufacturing
- Strength is less due to radial flanks
- Have interference problem
- More wear of tooth surface
- Teeth generated by double curves (epicycloid \& hypocycloid).Thus, difficult for manufacturing
- Strength is more due to wider flanks
- Do not have interference problem
- Less wear of tooth surface

Properties of Involute tooth profile

1. A normal drawn to an involute at pitch point is a tangent to the base circle.
2. Pressure angle remains constant during the mesh of an involute gears.
3. The involute tooth form of gears is insensitive to the centre distance and depends only on the dimensions of the base circle.

operties of Involute tooth profile

4. The radius of curvature of an involute is equal to the length of tangent to the base circle.
5. Basic rack for involute tooth profile has straight line form.
6. The common tangent drawn from the pitch point to the base circle of the two involutes is the line of action and also the path of contact of the involutes.

Properties of Involute tooth profile
7. When two involutes gears are in mesh and rotating, they exhibit constant angular velocity ratio and is inversely proportional to the size of base circles. (Law of Gearing or conjugate action)
8. Manufacturing of gears is easy due to single curvature of profile.

System of Gear Teeth

The following four systems of gear teeth are commonly used in practice:

1. $141 / 2^{0}$ Composite system
2. $141 ⁄ 20$ Full depth involute system
3. 20° Full depth involute system
4. 20° Stub involute system

stem of Gear Teeth

The $14 \frac{1}{2} 2^{0}$ composite system is used for general purpose gears.
It is stronger but has no interchangeability. The tooth profile of this system has cycloidal curves at the top and bottom and involute curve at the middle portion.

The teeth are produced by formed milling cutters or hobs.

The tooth profile of the $141 / 2^{0}$ full depth involute system was developed using gear hobs for spur and helical gears.

stem of Gear Teeth

The tooth profile of the 20° full depth involute system may be cut by hobs.

The increase of the pressure angle from $14 \frac{1}{2} 2^{\circ}$ to 20° results in a stronger tooth, because the tooth acting as a beam is wider at the base.

The 20° stub involute system has a strong tooth to take heavy loads.

Path of contact

It is the path traced by the point of contact of two teeth from beginning to the end of engagement

Length Of path of Contact:-

It is the length of common normal cut-off by the addendum circles of the wheel and the pinion

Path of contact

Consider a pinion driving wheel as shown in figure. When the pinion rotates in clockwise, the contact between a pair of involute teeth begins at K (on the flank near the base circle of pinion or the outer end of the tooth face on the wheel) and ends at L (outer end of the tooth face on the pinion or on the flank near the base circle of wheel).

MN - common normal at the point of contacts and the common tangent to the base circles
\boldsymbol{K} - Intersection of the addendum circle of wheel and the common tangent

L - Intersection of the addendum circle of pinion and common tangent

Path of contact

http://en.wikipedia.org/wiki/Image:Involute wheel.gif

Path of contact

of contact

$K L$ - Length of path of contact
$K P$ - path of approach PL - path of recess

$$
K L=K P+P L
$$

Path of Approach :-
Portion of path of contact from pitch point to the End of engagement

Path of Recess :-

Portion of path of contact from pitch point to the End of engagement

Path of contact

$r_{a}=O_{1} L$
= Radius of addendum circle of pinion
$R_{A}=O_{2} K$
= Radius of addendum circle of wheel
$r=O_{1} P$
= Radius of pitch circle of pinion
$R=O_{2} P$
= Radius of pitch cirle of wheel.

Path of contact

Radius of the base circle of pinion;
$O_{1} M=O_{1} P \cos \phi=r \cos \phi$ \&

Radius of the base circle of wheel;
$\mathrm{O}_{2} \mathrm{~N}=\mathrm{O}_{2} \mathrm{P} \cos \phi=R \cos \phi$

From right angle triangle $\mathrm{O}_{2} \mathrm{KN}$

of contact

Similarly from right angle triangle $O_{1} M L$

$$
\begin{aligned}
M L & =\sqrt{\left(O_{1} L\right)^{2}-\left(O_{1} M\right)^{2}} \\
& =\sqrt{\left(r_{a}\right)^{2}-r^{2} \cos ^{2} \phi}
\end{aligned}
$$

$M P=O_{1} P \sin \phi=r \sin \phi$
Path of recess: $P L$

$$
\begin{aligned}
P L & =M L-M P \\
& =\sqrt{\left(r_{a}\right)^{2}-r^{2} \cos ^{2} \phi}-r \sin \phi
\end{aligned}
$$

Path of contact

Length of path of contact $=K L$

$$
K L=K P+P L
$$

$$
=\sqrt{\left(R_{A}\right)^{2}-R^{2} \cos ^{2} \phi}+\sqrt{\left(r_{a}\right)^{2}-r^{2} \cos ^{2} \phi}-(R+r) \sin \phi
$$

Arc of contact

Arc of contact is the path traced by a point on the pitch circle from the beginning to the end of engagement of a given pair of teeth. In Figure, the arc of contact is $E P F$ or $G P H$.

of contact

It is the path traced by a point on the pitch circle from the beginning to the end of engagement of a given pair of teeth.
arcEPF \& arcGPH

Arc of contact

GPH - arc of contact
GP - arc of approach
PH - arc of recess
The angles subtended by these arcs at O_{1} are called angle of approach and angle of recess respectively.

of contact

Length of arc of approach $=\operatorname{arc} G P$

$$
=\frac{\text { Lenghtof pathof approach }}{\cos \phi}=\frac{K P}{\cos \phi}
$$

Length of arc of recess $=\operatorname{arc} P H$

$$
=\frac{\text { Lenghtof pathof recess }}{\cos \phi}=\frac{P L}{\cos \phi}
$$

Length of arc contact $=\operatorname{arc} G P H=\operatorname{arc} G P+\operatorname{arc} P H$
$=\frac{K P}{\cos \phi}+\frac{P L}{\cos \phi}=\frac{K L}{\cos \phi}=\frac{\text { Lengthof pathof contact }}{\cos \phi}$

Contact Ratio (or Number of Pairs of Teeth in Contact)

The contact ratio or the number of pairs of teeth in contact is defined as the ratio of the length of the arc of contact to the circular pitch.

Mathematically,

$$
\text { Contatratio }=\frac{\text { Length of the arc of contact }}{P_{C}}
$$

Where:

$$
P_{C}=\text { Circular pitch }=\pi \times m
$$

And

$$
m=\text { Module. }
$$

Number of Pairs of Teeth in Contact

Continuous motion transfer requires two pairs of teeth in contact at the ends of the path of contact, though there is only one pair in contact in the middle of the path, as
 in Figure.

Number of Pairs of Teeth in Contact

ber of Pairs of Teeth in Contact

The average number of teeth in contact is an important parameter - if it is too low due to the use of inappropriate profile shifts or to an excessive centre distance.The manufacturing inaccuracies may lead to loss of kinematic continuity -
 that is to impact, vibration and noise.

Number of Pairs of Teeth in Contact

The average number of teeth in contact is also a guide to load sharing teeth; it is termed the contact ratio

Interference in Involute Gears

O1andO2 - centers of pinion and a gear in mesh

MN - common tangent to the base circle

KL-path of contact between two mating teeth.

interference in Involute Gears

Consider, the radius of the addendum circle of pinion is increased to $\mathrm{O}_{1} \mathrm{~N}$, the point of contact L will moves from L to N.

If this radius is further increased, the point of contact L will be inside of base circle of wheel and not on the involute profile of the pinion.

Interference in Involute Gears

The tooth tip of the pinion will then undercut the tooth on the wheel at the root and damages part of the involute profile. This effect is known as interference.
........and occurs when the teeth are being cut and weakens the tooth at its root.

Interference in Involute Gears

Interference in Involute Gears

Interference in Involute Gears

The phenomenon, when the tip of tooth undercuts the root on its mating gear is known as interference.

Interference in Involute Gears

Similarly, if the radius of the addendum circles of the wheel increases beyond $\mathrm{O}_{2} \mathrm{M}$, then the tip of tooth on wheel will cause interference with the tooth on pinion.

The points M and N are called interference points.

rference in Involute Gears

Interference may be avoided if the path of the contact does not extend beyond interference points.

The limiting value of the radius of the addendum circle of the pinion is $\boldsymbol{O}_{\mathbf{1}} \boldsymbol{N}$ and of the wheel is $\boldsymbol{O}_{2} \boldsymbol{M}$.

Interference in Involute Gears

The interference

 may only be prevented, if the point of contact between the two teeth is always on the involute profiles and if the addendum circles of the two mating gears cut the common tangent to the base circles at the points of tangency.

When interference is just prevented, the maximum length of path of contact is MN.

Maximum pathof approach $=M P=r \sin \phi$
Maximum pathof recess $=P N=R \sin \phi$
Maximum lengthof pathof contact $=M N$
$M N=M P+P N=(r+R) \sin \phi$
Maximum lengthof arc of contact:

$$
=\frac{(r+R) \sin \phi}{\cos \phi}=(r+R) \tan \phi
$$

Methods to avoid Interference

1. Height of the teeth may be reduced.
2. Under cut of the radial flank of the pinion.
3. Centre distance may be increased. It leads to increase in pressure angle.
4. By tooth correction, the pressure angle, centre distance and base circles remain unchanged, but tooth thickness of gear will be greater than the pinion tooth thickness.

himum number of teeth on the pinion avoid

 IterferenceThe pinion turns clockwise and drives the gear as shown in Figure.

Points M and $\begin{array}{ll}\mathrm{N} & \text { are } \\ \text { interference } & \text { called } \\ \text { points. }\end{array}$ i.e., if the contact takes place beyond M and N , interference will occur.

himum number of teeth on the pinion

 avoid InterferenceThe limiting
value of addendum circle radius of pinion is $\mathbf{O}_{\mathbf{1}} \mathbf{N}$ and the limiting value of addendum circle radius of gear is $\mathrm{O}_{2} \mathrm{M}$. Considering the critical addendum circle radius of gear, the limiting number of teeth on gear can be calculated.

Minimum number of teeth on the pinion

 avbid Interference
Let

$\Phi=$ pressure angle
$R=$ pitch circle radius of gear
$=1 / 2 m T$
$r=$ pitch circle radius of pinion
$=1 / 2 m t$
$\mathrm{T} \& \mathrm{t}=$ number of teeth on gear \& pinion $\mathrm{m}=$ module

Minimum number of teeth on the pinion

 avoid Interference$\mathrm{a}_{\mathrm{w}}=$ Addendum constant of gear (or) wheel
$\mathrm{a}_{\mathrm{p}}=$ Addendum constant of pinion
$\mathrm{a}_{\mathrm{w}} \cdot \mathrm{m}=$ Addendum of gear
a_{p}. $\mathrm{m}=$ Addendum of pinion
$\mathrm{G}=$ Gear ratio $=T / t$

Minimum number of teeth on the pinion

 avbid InterferenceFrom triangle $\mathrm{O}_{1} \mathrm{NP}$, Applying cosine rule

$$
\begin{aligned}
O_{1} N^{2} & =O_{1} P^{2}+N P^{2}-2 \times O_{1} P \times P N \cos O_{1} P N \\
& =r^{2}+R^{2} \sin ^{2} \phi-2 r R \sin \phi \cos (90+\phi) \\
& =r^{2}+R^{2} \sin ^{2} \phi+2 r R \sin ^{2} \phi \\
& =r^{2}\left[1+\frac{R^{2} \sin ^{2} \phi}{r^{2}}+\frac{2 R \sin ^{2} \phi}{r}\right]=r^{2}\left[1+\frac{R}{r}\left(\frac{R}{r}+2\right) \sin ^{2} \phi\right]
\end{aligned}
$$

$\left(\because P N=O_{2} P \sin \phi=R \sin \phi\right)$

Minimum number of teeth on the pinion avoid Interference

Limiting radius of the pinion addendum circle:

$$
O_{1} N=r \sqrt{\left[1+\frac{R}{r}\left(\frac{R}{r}+2\right) \sin ^{2} \phi\right]}=\frac{m t}{2} \sqrt{1+\frac{T}{t}\left(\frac{T}{t}+2\right) \sin ^{2} \phi}
$$

Minimum number of teeth on the pinion avoid Interference

Addendum of the pinion $=O_{1} N-O_{1} P$

$$
\begin{aligned}
a_{p} m & =\frac{m t}{2} \sqrt{\left[1+\frac{T}{t}\left(\frac{T}{t}+2\right) \sin ^{2} \phi\right]}-\frac{m t}{2} \\
& =\frac{m t}{2}\left[\sqrt{\left.1+\frac{T}{t}\left(\frac{T}{t}+2\right) \sin ^{2} \phi-1\right]}\right.
\end{aligned}
$$

Mihimum number of teeth on the pinion bid Interference

Addendum of the pinion $=O_{1} N-O_{1} P$

$$
\begin{aligned}
& a_{p}=\frac{t}{2}\left[\sqrt{\left(1+\frac{T}{t}\left(\frac{T}{t}+2\right) \sin ^{2} \phi\right)}-1\right] \\
& t=\left[\sqrt{\left(1+G(G+2) a_{p} \sin ^{2} \phi\right)}-1\right]
\end{aligned}
$$

The equation gives minimum number of teeth required on the pinion to avoid interference.

Minimum number of teeth on the pinion avoid Interference

If the number of teeth on pinion and gear is same:

$$
G=1
$$

$$
\left.t=\frac{2 a_{p}}{\left[\sqrt{\left(1+3 \sin ^{2} \phi\right)}-1\right.}\right]
$$

Minimum number of teeth on the pinion avoid Interference

1. $141 / 2^{\mathrm{O}}$ Composite system
2. $14^{1 ⁄ 20}$ Full depth involute system
3. 20° Full depth involute system
4. 20° Stub involute system
$=\quad 12$
$=32$
$=\quad 18$
$=\quad 14$

Minimum number of teeth on the wheel to avbid Interference

From triangle $\mathrm{O}_{2} \mathrm{MP}$, applying cosine rule :
$O_{1} M^{2}=O_{2} P^{2}+P M^{2}-2 \times O_{2} P \times P M \cos O_{2} P M$
$=R^{2}+r^{2} \sin ^{2} \phi-2 R r \sin \phi \cos (90+\phi)$
$=R^{2}+r^{2} \sin ^{2} \phi+2 R r \sin ^{2} \phi$
$=R^{2}\left[1+\frac{r^{2} \sin ^{2} \phi}{R^{2}}+\frac{2 r \sin ^{2} \phi}{R}\right]=R^{2}\left[1+\frac{r}{R}\left(\frac{r}{R}+2\right) \sin ^{2} \phi\right]$
$\left(\because P M=O_{1} P \sin \phi=r \sin \phi\right)$

Mihimum number of teeth on the wheel to avpid Interference

The limiting radius of wheel addendum circle:
$O_{2} M=R\left[\sqrt{1+\frac{r}{R}\left(\frac{r}{R}+2\right) \sin ^{2} \phi}\right]$
$=\frac{m T}{2}\left[\sqrt{1+\frac{t}{T}\left(\frac{t}{T}+2\right) \sin ^{2} \phi}\right]$

Minimum number of teeth on the wheel to avoid Interference

Addendum of the pinion $=\mathrm{O}_{2} \mathrm{M}-\mathrm{O}_{2} \mathrm{P}$

$$
\begin{aligned}
a_{w} m & =\frac{m T}{2}\left[\sqrt{\left(1+\frac{t}{T}\left(\frac{t}{T}+2\right) \sin ^{2} \phi\right)}-1\right] \\
a_{w} & =\frac{T}{2}\left[\sqrt{\left(1+\frac{t}{T}\left(\frac{t}{T}+2\right) \sin ^{2} \phi\right)}-1\right]
\end{aligned}
$$

Minimum number of teeth on the wheel to

 avoid Interference$$
\begin{gathered}
T=\frac{2 a_{W}}{\left[\sqrt{\left(1+\frac{t}{T}\left(\frac{t}{T}+2\right) \sin ^{2} \phi\right)}-1\right]} \\
T=\frac{2 a_{W}}{\left[\sqrt{\left(1+\frac{1}{G}\left(\frac{1}{G}+2\right) \sin ^{2} \phi\right)}-1\right]}
\end{gathered}
$$

The equation gives minimum number of teeth required on the wheel to avoid interference.

himum number of teeth on the wheel to

avoid Interference

Multiplying by t / T, the equation gives minimum number of teeth required on the pinion to avoid interference.

$$
\begin{aligned}
& T * \frac{t}{T}=\frac{2 a_{W} * \frac{t}{T}}{\left[\sqrt{\left(1+\frac{1}{G}\left(\frac{1}{G}+2\right) \sin ^{2} \phi\right)}-1\right]} \\
& t=\frac{2 a_{W}}{\left[G \sqrt{\left(1+\frac{1}{G}\left(\frac{1}{G}+2\right) \sin ^{2} \phi\right)}-1\right]}
\end{aligned}
$$

Minimum number of teeth on the pinion avoid Interference

If the number of teeth on pinion and gear is same:

$$
\begin{gathered}
G=1 \\
T=\frac{2 a_{w}}{\left[\sqrt{\left(1+3 \sin ^{2} \phi\right)}-1\right]}
\end{gathered}
$$

Rack and Pinion

The rack is part of toothed wheel of infinite diameter. The base circle diameter and profile of the involute teeth are straight lines.

PITCH LINE

Mihimum number of teeth on the pinion to avpid Interference with Rack

Minimum number of teeth on the pinion to avoid Interference with Rack

Let

$\Phi=$ pressure angle $r=$ pitch circle radius of pinion
$=1 / 2 m t$
$t=$ number of teeth on pinion
$\mathrm{m}=$ module
$\mathrm{A}_{\mathrm{r}}=$ Addendum coefficient of rack

Minimum number of teeth on the pinion to avoid Interference with Rack

Let,
$A_{R} * m=N H=P N \sin \phi$
$B u t, \ldots .(P N=O P \sin \phi)$
$\therefore A_{R} * m=(O P \sin \phi) \sin \phi$
$\therefore A_{R} * m=O P \sin ^{2} \phi$
$\therefore A_{R} * m=r \sin ^{2} \phi$
$\therefore A_{R} * m=\frac{m t}{2} \sin ^{2} \phi$

$$
t=\frac{2 A_{R}}{\sin ^{2} \phi}
$$

Methods To Avoid Interference

1) Modified Tooth Profile

Methods To Avoid Interference

II) Modified Addendum Of Pinion \& Wheel

Methods To Avoid Interference

II) Modified Addendum Of Pinion \& Wheel

Methods To Avoid Interference

1II) Modified Centre Distance Between Pinion \& Wheel

Length of path of contact for Rack and Pinion

Length of path of contact for Rack and Pinion

$r=$ Pitch circle radius of the pinion $=\mathrm{O}_{1} \mathrm{P}$
$\Phi=$ Pressure angle
$r_{a}=$ Addendum radius of the pinion
$a=$ Addendum of rack Prichline of rack
$E F=$ Length of path of contact

Addendun circle of pinion Pitch circle of pinion
Base circle of pinion

Addendum line of rack

Length of path of contact for Rack and Pinion

$E F=$ Path of approach EP + Path of recess PF

$$
\begin{align*}
& \sin \phi=\frac{A P}{E P}=\frac{a}{E P} \tag{1}\\
& \text { Path of approach }=E P=\frac{a}{\sin \phi} \tag{2}\\
& \text { Path of recess }=P F=N F-N P \tag{3}
\end{align*}
$$

From triangle $O_{1} N P$:

$$
\begin{aligned}
& N P=O_{1} P \sin \phi=r \sin \phi \\
& O_{1} N=O_{1} P \cos \phi=r \cos \phi
\end{aligned}
$$

Lemgth of path of contact for Rack and Pinion

From triangle $O_{1} N F$:
$N F=\left(O_{1} F^{2}-O_{1} N^{2}\right)^{\frac{1}{2}}=\left(r_{a}^{2}-r^{2} \cos ^{2} \phi\right)^{\frac{1}{2}}$
Substituting NP and NF values in theequation (3)
Path of racess $=P F=\left(r_{a}^{2}-r^{2} \cos ^{2} \phi\right)^{\frac{1}{2}}-r \sin \phi$
\therefore Path of length of contact $=E F=E P+P F$

$$
=\frac{a}{\sin \phi}+\left(r_{a}^{2}-r^{2} \cos ^{2} \phi\right)^{\frac{1}{2}}-r \sin \phi
$$

Summary

Length of path of contact in spur gear
Arc of contact in spur gear
Contact ratio in spur gear
Number of pair of teeth in contact in spur gears
Length of path of contact in Rack and pinion

Exercise I

Two spur wheels have 24 and 30 teeth with a standard addendum of 1 module. The pressure angle is 20°. Calculate the path of contact and arc of contact.

Solution:

Data: $t=24 ; T=30$; addendum $=1 \mathrm{~m}$ and $\phi=20^{\circ}$
Pitch circle radius of the pinion $=r=\frac{m t}{2}=\frac{m \times 24}{2}=12 \mathrm{~m}$
Pitch circle radius of the gear $=R=\frac{m T}{2}=\frac{m \times 30}{2}=15 \mathrm{~m}$

Exercise I-Continued

Addendum circle radius of the pinion $=r_{a}=r+m$

$$
r_{a}=12 m+m=13 m
$$

Addendum circle radius of the gear $=R_{A}=R+m$

$$
R_{A}=15 m+m=16 m
$$

Exercise I-Continued

Length of path of contact $=K L$

$$
K L=\sqrt{\left(R_{A}\right)^{2}-R^{2} \cos ^{2} \phi}
$$

$$
+\sqrt{\left(r_{a}\right)^{2}-r^{2} \cos ^{2} \phi}
$$

$$
-(R+r) \sin \phi
$$

Exercise I-Continued

Length of path of contact $=K L=K P+P L$

$$
\begin{aligned}
& =\sqrt{\left(R_{A}\right)^{2}-R^{2} \cos ^{2} \phi}+\sqrt{\left(r_{a}\right)^{2}-r^{2} \cos ^{2} \phi}-(R+r) \sin \phi \\
& =\sqrt{(16 m)^{2}-(15 m)^{2} \cos ^{2} 20}+\sqrt{(13 m)^{2}-(12 m)^{2} \cos ^{2} 20} \\
& \quad-(15 m+12 m) \sin 20 \\
& =4.802 m
\end{aligned}
$$

Length of arc of contact $=\frac{\text { Length of path of contact }}{\cos \phi}$

$$
=\frac{4.802 \mathrm{~m}}{\cos 20}=5.11 \mathrm{~m}, \mathrm{~mm}
$$

Exercise 2

Two gears in mesh have a module of 8 mm and a pressure angle of 20°. The larger gear has 57 teeth while the pinion has 23 teeth. If the addenda on pinion and gear wheel are equal to one module (1 m), find

1. The number of pairs of teeth in contact and
2. The angle of action of the pinion and the gear wheel.

Solution:

Data: $t=23 ; T=57$; addendum $=1 m=8 \mathrm{~mm}$ and $\phi=20^{\circ}$

Exercise 2 - continued

Pitch circle radius of the pinion $=r=\frac{m t}{2}=\frac{8 \times 23}{2}=92 \mathrm{~mm}$
Pitch circle radius of the gear $=R=\frac{m T}{2}=\frac{8 \times 57}{2}=228 \mathrm{~mm}$
Addendum circle radius of the pinion $=r_{a}=r+$ addendum

$$
r_{a}=92+8=100 \mathrm{~mm}
$$

Addendum circle radius of the gear $=R_{A}=R+$ addendum

$$
R_{A}=228+8=236 \mathrm{~mm}
$$

Exercise 2 - continued

Length of path of contact $=K L$

$$
K L=\sqrt{\left(R_{A}\right)^{2}-R^{2} \cos ^{2} \phi}
$$

$$
+\sqrt{\left(r_{a}\right)^{2}-r^{2} \cos ^{2} \phi}
$$

$$
-(R+r) \sin \phi
$$

Exercise 2 - continued

Length of path of contact $=K L=K P+P L$

$$
\begin{aligned}
& =\sqrt{\left(R_{A}\right)^{2}-R^{2} \cos ^{2} \phi}+\sqrt{\left(r_{a}\right)^{2}-r^{2} \cos ^{2} \phi}-(R+r) \sin \phi \\
& =\sqrt{(236)^{2}-(228)^{2} \cos ^{2} 20}+\sqrt{(100)^{2}-(92)^{2} \cos ^{2} 20} \\
& \quad-(228+92) \sin 20 \\
& =39.76 \mathrm{~mm}
\end{aligned}
$$

Length of arc of contact $=\frac{\text { Length of path of contact }}{\cos \phi}$

$$
=\frac{39.76}{\cos 20}=42.31 \mathrm{~mm}
$$

Exercise 2 - continued

Number of pairs of teeth in contact $=\frac{\text { Length of arc of contact }}{\text { circular pitch }}$

$$
=\frac{\text { Length of arc of contact }}{p_{c}}=\frac{42.31}{\pi m}=1.684 \approx 2
$$

Angle of action of gear wheel $=\frac{\text { Length of arc of contact }}{2 \pi \times R} \times 360^{\circ}$

$$
=\frac{42.31}{2 \pi \times 228} \times 360=10.637^{\circ}=10^{\circ} 38^{\prime} 16^{\prime}
$$

Angle of action of pinion $=\frac{\text { Length of arc of contact }}{2 \pi \times r} \times 360^{\circ}$

$$
=\frac{42.31}{2 \pi \times 92} \times 360=26.36^{\circ}=26^{\circ} 21^{\prime} 47^{\prime \prime}
$$

Exercise 2 - continued

$\frac{\text { Angle of action of pinion }}{\text { Angle of action of gear }}=\frac{26.36}{10.637}=2.478$ and

$$
\frac{T}{t}=\frac{57}{23}=2.478
$$

Exercise 3

The following data refers to two mating involute gears of 20° pressure angle. Number of teeth on pinion is 20 . Gear ratio $=2$, speed of pinion is 250 rpm , module $=12 \mathrm{~mm}$. If the addendum on each wheel is such that the path of approach and the path of recess on each side are half of the maximum permissible length, find the maximum velocity of sliding during approach and recess and the length of arc of contact.

Solution:

Data: $t=20 ; \mathrm{G}=2 ; \quad m=12 \mathrm{~mm} ; \quad n=250 \mathrm{rpm}$ and $\phi=20^{\circ}$

Exercise 3 - continued

Pitch circle radius of the pinion $=r=\frac{m t}{2}=\frac{12 \times 20}{2}=120 \mathrm{~mm}$

$$
\text { Gear ratio }=\frac{T}{t}=2 \quad \Rightarrow \quad \frac{T}{20}=2
$$

Number of teeth on gear $=T=2 \times 20=40$

Pitch circle radius of the gear $=R=\frac{m T}{2}=\frac{12 \times 40}{2}=240 \mathrm{~mm}$

Exercise 3 - continued

From the given condition:
Re quired path of approach:
$=\underline{\text { Maximum path of approach }}$
$=\frac{r \times \sin \phi}{2}$
$=\frac{120 \times \sin 20}{2}=20.52 \mathrm{~mm}$

Exercise 3 - continued

Required path of recess:
= Maximum path of recess
$=\frac{2}{2}$
$=\frac{R \times \sin \phi}{2}$
$=\frac{240 \times \sin 20}{2}=41.04 \mathrm{~mm}$

Exercise 3 - continued

Path of approach: $K P$
$K P=K N-P N$
$=\sqrt{\left(R_{A}\right)^{2}-R^{2} \cos ^{2} \phi}-R \sin \phi$
$20.52=\sqrt{\left(R_{A}\right)^{2}-(240)^{2} \cos ^{2} 20}-240 \times \sin 20$
$\therefore \quad R_{A}=247.77 \mathrm{~mm}=$ addendumradius of the gear
Addendumof the gear $=R_{A}-R=247.77-240=7.77 \mathrm{~mm}$

Exercise 3 - continued

Path of recess: PL
$P L=M L-M P$

$$
=\sqrt{\left(r_{A}\right)^{2}-r^{2} \cos ^{2} \phi}-r \sin \phi
$$

$41.04=\sqrt{\left(r_{A}\right)^{2}-(120)^{2} \cos ^{2} 20}-120 \times \sin 20$
$\therefore \quad r_{A}=139.46 \mathrm{~mm}=$ addendum radius of the pinion
Addendum of the pinion $=r_{A}-r=139.46-120=19.46 \mathrm{~mm}$
Path of contact $=$ Path of approach + Path of recess

$$
=20.52+41.04=61.56 \mathrm{~mm}
$$

Exercise 3 - continued

Path of recess: PL
$P L=M L-M P$

$$
=\sqrt{\left(r_{A}\right)^{2}-r^{2} \cos ^{2} \phi}-r \sin \phi
$$

$41.04=\sqrt{\left(r_{A}\right)^{2}-(120)^{2} \cos ^{2} 20}-120 \times \sin 20$
$\therefore \quad r_{A}=139.46 \mathrm{~mm}=$ addendum radius of the pinion
Addendumof the pinion $=r_{A}-r=139.46-120=19.46 \mathrm{~mm}$
Path of contact $=$ Path of approach + Path of recess

$$
=20.52+41.04=61.56 \mathrm{~mm}
$$

Exercise 3 - continued

Arc of contact $=\frac{\text { Path of contact }}{\cos \phi}=\frac{61.56}{\cos 20}=65.51 \mathrm{~mm}$
Angular speed of the pinion $=\omega_{p}=\frac{2 \pi \times n}{60}$

$$
=\frac{2 \pi \times 250}{60}=26.16 \mathrm{rad} / \mathrm{sec}
$$

Angular speed of the gear $=\omega_{G}=\frac{2 \pi \times N}{60}=\frac{2 \pi \times n}{60 \times G}$

$$
=\frac{2 \pi \times 250}{60 \times 2}=13.08 \mathrm{rad} / \mathrm{sec}
$$

Exercise 3 - continued

Maximum velocity of sliding during appraach:

$$
\begin{aligned}
& =\left(\omega_{P}+\omega_{G}\right) \times \text { Path of approach } \\
& =(26.16+13.08) \times 20.52=805.2 \mathrm{~mm} / \mathrm{sec}
\end{aligned}
$$

Maximum velocity of sliding during recess :

$$
\begin{aligned}
& =\left(\omega_{P}+\omega_{G}\right) \times \text { Path of recess } \\
& =(26.16+13.08) \times 41.04=1610.4 \mathrm{~mm} / \mathrm{sec}
\end{aligned}
$$

Foot pedal gear control by shift cam assembly

A Gear shift pedal
B Kick starter
C main and clutch shaft
D and F shift forks

E shift cam
G Start and counter shaft
H cam shaft with linkage for shift cam
Gearbox of a motor cycle using spur gears13

Used for intersecting shafts $\left(90^{\circ}\right)$ in same plane

- Straight Bevel Gear / Spiral Bevel Gear

For one to one ratio

- Used to change direction

Bevel Gears

Straight Bevel Gear

Bevel Gears

Spiral Bevel Gear

Terminology Of Bevel Gears

- Pitch cones:

It is an imaginary cones in a bevel gear which rolls without slipping when they are in peripheral contact with each other. (\triangle OAB)

- Pitch cone angle (γ):

It is the angle subtended by pitch line of pitch cone with the axis of gear.

- Cone distance (Da):

It is the distance measured along the pitch line from PC diameter to the apex of cone.
i.e. distance AO or BO

- Back cone :

It is an imaginary cone and its elements are perpendicular to the elements of pitch cone. $\left(\Delta O_{1} A B\right)$

- Back cone Distance $\left(D_{b}\right)$:

It is the distance measured along the pitch line from PCD to the apex of back cone.
i.e. distance $A O_{1}$ or $B O_{\text {, }}$

- Back cone angle (β):

It is the angle subtended by pitch line of back cone to the axis of gear.

- Shaft angle (θ):

It is the angle between two intersecthg axis of bevel gears. It is equal to sum of the pitch cone angles of both bevel gears. (90°)

- Face width (b) :

It is the length of tooth measured along the pitch line of pitch cone.

Pitch Cone Angles \& Its Geometrical Relations

Cone Angles \& Its Geometrical Relations

Let,
$\boldsymbol{\theta}=$ Shaft angle $=\boldsymbol{\gamma}_{1}+\boldsymbol{\gamma}_{2}$
$\gamma_{1}=$ Pitch cone angle of bevel gear 1
$\mathbf{Y}_{\mathbf{1}}=$ Pitch cone angle bevel gear 2
$\mathrm{T}_{1}=$ No. of teeth on bevel gear 1
$\mathbf{T}_{2}=$ No. of teeth on bevel gear 2
$\omega_{1}=$ Transverse module for bevel gear 1
$\boldsymbol{\omega}_{2}=$ Transverse module for bevel gear 2
$\mathbf{r}_{1}=\mathrm{PC}$ radius for bevel gear 1
$\mathbf{r}_{2}=\mathrm{PC}$ radius for bevel gear 2

Cone Angles \& Its Geometrical Relations

$G=$ Gear ratio $=T_{2} / T_{1}=r_{2} / r_{1}=\omega_{1} / \omega_{2}$
Frm fig;

$$
\begin{equation*}
O P=\frac{r_{1}}{\sin \gamma_{1}}=\frac{r_{2}}{\sin \gamma_{2}} . . \tag{1}
\end{equation*}
$$

$\therefore \frac{\sin \gamma_{1}}{\sin \gamma_{2}}=\frac{r_{1}}{r_{2}}$
$\therefore \sin \gamma_{1}=\frac{r_{1}}{r_{2}} \cdot \sin \gamma_{2}$
$\therefore \sin \gamma_{1}=\frac{r_{1}}{r_{2}} \cdot \sin \left(\theta-\gamma_{1}\right) \ldots \ldots\left[\theta=\gamma_{1}+\gamma_{2}\right]$
$\therefore \sin \gamma_{1}=\frac{r_{1}}{r_{2}} \cdot \sin \theta \cos \gamma_{1}-\cos \theta \sin \gamma_{1}$

Cone Angles \& Its Geometrical Relations

Dividing above eq. by $\cos _{1}$;
$\therefore \frac{\sin \gamma_{1}}{\cos \gamma_{1}}=\frac{r_{1}}{r_{2}}\left[\sin \theta-\cos \theta \cdot \frac{\sin \gamma_{1}}{\cos \gamma_{1}}\right]$
$\tan \gamma_{1}=\frac{r_{1}}{r_{2}}\left[\sin \theta-\cos \theta \cdot \tan \gamma_{1}\right]$
$\frac{r_{2}}{r_{1}} \tan \gamma_{1}=\left[\sin \theta-\cos \theta \cdot \tan \gamma_{1}\right]_{\substack{\text { Pitctonene of } \\ \text { bevel gear } 1}}$
$\frac{r_{2}}{r_{1}} \tan \gamma_{1}+\cos \theta \cdot \tan \gamma_{1}=\sin \theta$ r_{1}
$\therefore \tan \gamma_{1}\left[\frac{r_{2}}{r_{1}}+\cos \theta\right]=\sin \theta$

Pitch Cone Angles \& Its Geometrical Relations

$$
\tan \gamma_{1}=\frac{\sin \theta}{\left[\frac{r_{2}}{r_{1}}+\cos \theta\right]}
$$

$\tan \gamma_{1}=\frac{\sin \theta}{\left[\frac{\omega_{1}}{\omega_{2}}+\cos \theta\right]}$

Similarly,

Pitch cone of bevel gear 1

Eq. to find out Pitch Cone Angles of bevel pinion \& gear

Pitch Cone Angles \& Its Geometrical Relations

When Shaft angle $\theta=90^{\circ}$
$\tan \gamma_{1}=\frac{\sin 90^{\circ}}{\left[\frac{\omega_{1}}{\omega_{2}}+\cos 90^{\circ}\right]}=\frac{\omega_{2}}{\omega_{1}}=\frac{T_{1}}{T_{2}}=\frac{1}{G}$
And
$\tan \gamma_{2}=\frac{\sin 90^{\circ}}{\left[\frac{\omega_{2}}{\omega_{1}}+\cos 90^{\circ}\right]}=\frac{\omega_{1}}{\omega_{1}}=\frac{T_{2}}{T_{1}}=G$

Force Analysis Of Bevel Gears

Force Analysis Of Bevel Gears Considering pitch cone of bevel gear 1

The resultant force F is acting at the point of contact C on the tooth which is at the mid-point along the face of tooth
Let,
Φ = Pressure angle
$\gamma_{1}=$ Pitch cone angle of bevel gear 1
$\mathbf{r}_{\mathrm{m}}=\mathrm{PC}$ radius for bevel gear at the mid-point of face width
$\mathbf{r}_{1}=$ PC radius for bevel gear 1
b = Face width
Frm fig. $\quad r_{m}=\left[r_{1}-\frac{b \sin \gamma_{1}}{2}\right]$

Force Analysis Of Bevel Gears

Force Analysis Of Bevel Gears

Force Analysis Of Bevel Gears

Consider plane ABCD......From $\triangle A B C$

$$
F_{s}=F_{t} \tan \phi \ldots \ldots \ldots . \text { (1) }
$$

Consider plane BEGC......From \triangle BEC

$$
\begin{aligned}
& F_{a}=F_{s} \sin \gamma_{1} \\
& F_{r}=F_{s} \cos \gamma_{1}
\end{aligned}
$$

From eq.(1), we get $F_{a} \& F_{r}$ as

$$
\begin{aligned}
& F_{a}=F_{t} \tan \phi \cdot \sin \gamma_{1} \ldots \ldots \ldots . \text { (2) } \\
& F_{r}=F_{t} \tan \phi \cdot \cos \gamma_{1} \ldots \ldots \ldots . \text { (3) }
\end{aligned}
$$

Eq(1), (2) \& (3) are used to determine verious forces acting on driving gear 1

Force Analysis Of Bevel Gears

The forces acting on driven gear 2 can be determined by considering actions \& reactions in equal \& opposite directions.

Therefore,
axial force of driving gear 2 = radial force of driving gear I

$$
\text { i.e., } F_{a 2}=F_{r 1}
$$

radial force of driving gear2 = axial force of driving gear

$$
\text { i.e., } F_{r 2}=F_{a l}
$$

Helical Gear

- Teeth are at an angle; Helix angle (α) 7^{0} to 23°)
- Gradual engagement of teeth reduces shocks \& Stresses
- More smooth \& quiet operation
- Used for high speed transmission \& efficiency is frm

- Tooth strength is greater because the teeth are longer
- Greater surface contact on the teeth thus carry more load than a spur gear
- Used in automobiles

GEARS

-Disadvantage:

-Longer surface of contact reduces the efficiency of a helical gear relative to a spur gear
-They induce axial thrust in one direction on bearing

Two helical gears of identical pitch \& of opposite hand

- Axial thrust of two gears act in opposite direction, thus...
- Problem of axial thrust is eliminated

Terminology Of Helical Gears

It is the angle between axis of shaft and center line of teeth. It is the angle at which teeth are inclined to the axis of the gear. It is denoted by α

- Transverse circular pitch $\quad\left(\mathrm{P}_{\mathrm{t}}\right)$:-

It is the distance between the corresponding points on adjacent teeth measured along PC in transverse plane. It is denoted by P_{t}

Terminology Of Helical Gears

- Normal circular pitch (\mathbf{P}_{n}):-

It is the distance between the corresponding points on adjacent teeth measured along PC in normal plane. It is denoted by P_{n}

$$
\begin{align*}
& \cos \alpha=\frac{P_{n}}{P_{t}} \\
& P_{n}=P_{t} \cos \alpha . \tag{1}
\end{align*}
$$

But,
$P_{c}=\pi \cdot m$
$\therefore e q(1) \ldots$.
$\pi \cdot m_{n}=\pi \cdot m_{t} \cdot \cos \alpha$
Where, $\mathrm{m}_{\mathrm{n}}=$ Normal module
$\therefore m_{n}=m_{t} \cos \alpha$

minology Of Helical Gears

- Axial Pitch $\left(\mathbf{P}_{\mathrm{a}}\right)$:- It is the distance between the corresponding points on adjacent teeth measured along axial direction.
- Transverse pressure angle (Φ_{t})

The pressure angle measured along the transverse plane.

- Normal pressure angle $\left(\Phi_{n}\right)$

The pressure angle measured along the normal plane.

$$
\cos \alpha=\frac{\tan \phi_{n}}{\tan \phi_{t}}
$$

Centre distance
Gear ratio

Virtual Number Of Teeth/Number Of Teeth On Equivalent Spur Gear

If the helical gear is viewed along the normal plane, it will appear as a spur gear

Pitch Cylinder cut at normal N-N

Pitch cylinder of equivalent spur gear of ϕd_{e}

Semi-minor axis $=r$
Semi-major axis = r/cos α
Where,
$\mathrm{r}-\mathrm{PC}$ radius along $\mathrm{T}-\mathrm{T}$
$r_{e}-P C$ radius of equivalent spur gear

Let,
r_{e} - PC radius of equivalent spur gear $d_{e}-P C$ diameter of equivalent spur gear $r-\mathrm{PC}$ radius of helical gear

$$
\begin{aligned}
r_{e} & =\frac{(\text { Semi }- \text { major axis })^{2}}{\text { Semi }- \text { minor axis }} \\
r_{e} & =\frac{\left[\frac{r}{\cos \alpha}\right]^{2}}{r} \\
r_{e} & \left.=\frac{r}{\cos ^{2} \alpha}\right] \\
d_{e} & =\frac{\mathrm{OR}^{2}}{\cos ^{2} \alpha}
\end{aligned}
$$

Virtual Number Of Teeth

Hence, the helical gear is equivalent to an imaginary spur gear, which is in normal plane N-N, having pitch circle radius r. This imaginary spur gear is called equivalent spur gear or virtural spur gear or formative spur gear.

The number of teeth on equivalent spur gear is called as equivalent number teeth or virtual number of teeth or formative number of teeth.
$=$ Number of teeth on helical gear
$t_{e}=$ Number of teeth on equivalent spur gear or virtual number of teeth
$m_{t}=$ Transverse module of helical gear
$m_{n}=$ Normal module of equivalent spur gear

Virtual Number Of Teeth

- We know that module of spur gear is,

Virtual Number Of Teeth

- We know that module of helical gear is,

$$
\begin{aligned}
& m_{t}=\frac{d}{t} \\
& t=\frac{d}{m_{t}}
\end{aligned}
$$

From eq (1) \& (2)

Force Analysis Of Helical Gears

Force Analysis Of Helical Gears

Resultant force F resolved into three components:-
 Ft - Tangential Force
 Fr - Radial Force
 Fa - Axial Force

Force Analysis Of Helical Gears

From fig (a);

$$
\begin{aligned}
F_{r} & =F \sin \phi_{n} \ldots .(1) \\
B C & =F \cos \phi_{n}
\end{aligned}
$$

From fig (b); $F_{t}=B C \times \cos \alpha$

Fig. (a)

$$
\begin{aligned}
F_{t}= & F \cos \phi_{n} \cdot \cos \alpha \ldots .(2) \\
F_{a}= & B C \sin \alpha \\
F_{a}= & F \cos \phi_{n} \cdot \sin \alpha \ldots .(3) \\
& \text { Dividing(3)by(2)} \ldots \\
\frac{F_{a}}{F_{t}}= & \frac{F \cos \phi_{n} \cdot \sin \alpha}{F \cos \phi_{n} \cdot \cos \alpha} \\
F_{a}= & F_{t} \tan \alpha
\end{aligned}
$$

Fig. (b)

Force Analysis Of Helical Gears

From eq (1) \& (2) $\ldots \ldots$

Also tangential force acting on tooth is,

$$
\begin{align*}
F_{r} & =\frac{F_{t}}{\cos \phi_{n} \cdot \cos \alpha} \cdot \sin \phi_{n} \\
& \therefore F_{r}=F_{t}\left[\frac{\tan \phi_{n}}{\cos \alpha}\right] \ldots \tag{4}
\end{align*}
$$

Where,

$$
F_{t}=\frac{T}{r}
$$

T= torque transmitted by helical gear
 $r=$ pitch circle radius of helical gear

Force Analysis Of Helical Gears

From eq (4)...... $\cos \alpha=\frac{\tan \phi_{n}}{\frac{F_{r}}{F_{r}}}$.
F_{t}
From eq (5) \& (6)........ $\cos \alpha=\frac{\tan \phi_{n}}{\tan \phi_{t}}$

Spiral Gears

- Skew Gears / Crossed Helical Gears

- Used for Non-parallel \& Non-intersecting shafts
- Point contact between mating teeth
- Low load transmission
- Used in distribution devices of automobile engines/ measurement instruments

- Two meshing gears can have same or opposite hands
- Helix angle in case of spiral angle is known as Spiral Angle
- If spiral angles are different,Transverse module m_{t} is also different
- For specifying size of spiral gears Normal module m_{n} is always used

Shaft Angle Of Spiral Gears

- The shaft angle (θ) is the angle through which one of the shaft must be rotated so that it is parallel to the other shaft If the hands of two meshing spiral gears are same, then the shaft angle θ is given by,

$$
\theta=\alpha_{1}+\alpha_{2}
$$

- If the hands of two meshing spiral gears are different, then the shaft angle θ is given by,

$$
\theta=\alpha_{1}-\alpha_{2}
$$

Centre Distance Between Spiral Gears

$l=$ C.D. between spiral gears $\boldsymbol{\alpha}_{\mathbf{1}}, \boldsymbol{\alpha}_{2}=$ Spiral angles for gear $1 \& 2$ $\mathbf{Z}_{1}, \mathbf{Z}_{2}=$ No. of teeth on gear $1 \& 2$ $\mathbf{N}_{\mathbf{1}}, \mathbf{N}_{\mathbf{2}}=$ Speed of gear $1 \& 2$ $\mathbf{G}=$ Gear ratio $=\mathbf{Z}_{2} / \mathbf{Z}_{1}=\mathbf{N}_{1} / \mathbf{N}_{2}$ $\mathbf{m t}_{\mathbf{1}}, \mathbf{m t}_{\mathbf{2}}=$ Transverse module for $1 \& 2$
$\mathbf{m}_{\mathbf{n}}=$ Normal module for $1 \& 2$
$\mathbf{r}_{1}, \mathbf{r}_{2}=$ PC radius for $1 \& 2$

Centre Distance Between Spiral Gears

We know that pitch circle radius of gear is,

$$
\mathrm{r}=\frac{m_{t} Z}{2}
$$

Pitch circle radius of gear 1 is,

$$
r_{1}=\frac{m_{t 1} Z_{1}}{2}
$$

Pitch circle radius of gear 2 is,

$$
r_{2}=\frac{m_{t 2} Z_{2}}{2}
$$

The centre distance between two spiral gear is,

$$
l=r 1+r 2
$$

$$
\therefore l=\frac{m_{t 1} \cdot T_{1}}{2}+\frac{m_{t 2} \cdot T_{2}}{2}
$$

$$
\therefore l=\frac{m_{n}}{\cos \alpha_{1}} \cdot \frac{T_{1}}{2}+\frac{m_{n}}{\cos \alpha_{2}} \cdot \frac{T_{2}}{2}
$$

$$
\therefore l=\frac{m_{n}}{2} \cdot\left[\frac{T_{1}}{\cos \alpha_{1}}+\frac{T_{2}}{\cos \alpha_{2}}\right]
$$

$$
\therefore l=\frac{m_{n} T_{1}}{2} \cdot\left[\frac{1}{\cos \alpha_{1}}+\frac{T_{2} / T_{1}}{\cos \alpha_{2}}\right]
$$

$$
\therefore l=\frac{m_{n} T_{1}}{2} \cdot\left[\frac{1}{\cos \alpha_{1}}+\frac{G}{\cos \alpha_{2}}\right]
$$

Efficiency Of Spiral Gears

Efficiency Of Spiral Gears

$F_{t 1}=$ Tangential force acting on gear 1
$\mathrm{F}_{\mathrm{t} 2}=$ Tangential force acting on gear 2
$F_{a} \quad$ Axial force acting on gear 1
$\mathrm{F}_{\mathrm{a} 2}=$ Axial force acting on gear 2
$\mathrm{F}_{\mathrm{N}} \quad=$ Normal reaction at the point of contact
F = Resultant force/ Resultant reaction at pt of contact
$\alpha_{1} \quad=$ Spiral angles for gear 1
$\alpha_{2}=$ Spiral angles for gear 2

Efficiency Of Spiral Gears

- $\theta=$ Shaft angle $=\alpha I+\alpha 2$
- Φ = Angle of friction
- NI = Speed of gear I
- N2 = Speed of gear 2
- $\mathrm{G}=$ Gear ratio $=\mathrm{T} 2 / \mathrm{TI}=\mathrm{NI} / \mathrm{N} 2$
- mtl = Transverse module for I
- $\mathrm{mt2}=$ Transverse module for 2
- mn = Normal module for I \& 2
- dl = PC diameter for I
- d2 = PC diameter for 2

Efficiency Of Spiral Gears

From.... $\triangle P A B$,
$F_{t 1}=F \cos \left(\alpha_{1}-\phi\right)$
Work i/p or i/p power to the driver is;
$\therefore \operatorname{work}(i / p)=\frac{2 \pi N_{1}}{60} \times M_{t 1}$
$\therefore \operatorname{work}(i / p)=\frac{2 \pi N_{1}}{60} \times F_{t 1} \times r_{1}$

$\therefore \operatorname{work}(i / p)=\frac{2 \pi N_{1}}{60} \times F_{t 1} \times \frac{d_{1}}{2}$
$\therefore \operatorname{work}(i / p)=\frac{\pi d_{1} N_{1}}{60} \times F_{t 1}$
$\therefore \operatorname{work}(i / p)=\frac{\pi d_{1} N_{1}}{60} \times F\left(\cos \alpha_{1}-\phi\right)$

Efficiency Of Spiral Gears

From.... $\triangle P C D$,

$$
F_{t 2}=F \cos \left(\alpha_{2}+\phi\right)
$$

Work i/p or i/p power to the driver is;
$\therefore \operatorname{work}(o / p)=\frac{2 \pi N_{2}}{60} \times M_{t 2}$
$\therefore \operatorname{work}(o / p)=\frac{2 \pi N_{2}}{60} \times F_{t 2} \times r_{2}$

$\therefore \operatorname{work}(o / p)=\frac{2 \pi N_{2}}{60} \times F_{t 2} \times \frac{d_{2}}{2}$
$\therefore \operatorname{work}(o / p)=\frac{\pi d_{2} N_{2}}{60} \times F_{t 2}$
$\therefore \operatorname{work}(o / p)=\frac{\pi d_{2} N_{2}}{60} \times F\left(\cos \alpha_{2}+\phi\right)$

Efficiency Of Spiral Gears

The Efficiency of Spiral gear is;

$$
\begin{aligned}
& \eta=\frac{\operatorname{work}(o / p)}{\operatorname{work}(i / p)} \\
& \eta=\frac{\frac{\pi d_{2} N_{2}}{60} \times F\left(\cos \alpha_{2}+\phi\right)}{\frac{\pi d_{1} N_{1}}{60} \times F\left(\cos \alpha_{1}-\phi\right)} \\
& \eta=\frac{d_{2} N_{2}\left(\cos \alpha_{2}+\phi\right)}{d_{1} N_{1}\left(\cos \alpha_{1}-\phi\right)}
\end{aligned}
$$

Efficiency Of Spiral Gears

We know that;

$$
m_{n}=m_{t 1} \cos \alpha_{1}
$$

$$
\therefore d_{1}=\frac{m_{n} T_{1}}{\cos \alpha_{1}} \ldots \ldots \ldots \ldots \ldots \ldots(3)
$$

$$
\therefore d_{2}=\frac{m_{n} T_{2}}{\cos \alpha_{2}} \ldots \ldots \ldots \ldots \ldots . .(4)
$$

Efficiency Of Spiral Rnore

From eq (3) \& (4);

$$
\begin{aligned}
& \frac{d_{2} N_{2}}{d_{1} N_{1}}=\frac{\frac{m_{n} T_{2}}{\cos \alpha_{2}} \times N_{2}}{\frac{m_{n} T_{1}}{\cos \alpha_{1}} \times N_{1}} \\
& \frac{d_{2} N_{2}}{d_{1} N_{1}}=\frac{T_{2} N_{2}}{T_{1} N_{1}} \cdot \frac{\cos \alpha_{1}}{\cos \alpha_{2}}
\end{aligned}
$$

$\frac{d_{2}}{d_{1}}=\frac{T_{2}}{T_{1}} \frac{\cos \alpha_{1}}{\cos \alpha_{2}}$
$\frac{d_{2} N_{2}}{d_{1} N_{1}}=\frac{\cos \alpha_{1}}{\cos \alpha_{2}} \ldots \ldots \ldots \ldots \ldots \ldots\left[\because G=\frac{T_{2}}{T_{1}}=\frac{N_{1}}{N_{2}}\right] \ldots \ldots \ldots \ldots$. (5)

Efficiency Of Spiral Gears

Substituting value of eq (5) in η;

$$
\begin{align*}
& \eta=\frac{\cos \alpha_{1} \cdot\left(\cos \alpha_{2}+\phi\right)}{\cos \alpha_{2} \cdot\left(\cos \alpha_{1}-\phi\right)} \\
& \eta=\frac{1 / 2 \cos \left(\alpha_{1}+\alpha_{2}+\phi\right)+\cos \left(\alpha_{1}-\alpha_{2}-\phi\right)}{1 / 2 \cos \left(\alpha_{2}+\alpha_{1}-\phi\right)+\cos \left(\alpha_{2}-\alpha_{1}+\phi\right)} \\
& \eta=\frac{\cos (\theta+\phi)+\cos \left(\alpha_{1}-\alpha_{2}-\phi\right)}{\cos (\theta-\phi)+\cos \left(\alpha_{2}-\alpha_{1}+\phi\right)} \ldots \ldots . .\left[\because \theta=\alpha_{1}+\alpha_{2}\right] . \tag{A}
\end{align*}
$$

Efficiency Of Spiral Gears

Angles Φ \& θ are constants,
Therefore, Efficiency will be maximum when
$\cos \left(\alpha_{1}-\alpha_{2}-\Phi\right)$ is maximum i.e.,

$$
\cos \left(\alpha_{1}-\alpha_{2}-\phi\right)=1
$$

$\therefore \alpha_{1}-\alpha_{2}-\phi=0$
$\therefore \alpha_{1}-\alpha_{2}=\phi$
$\therefore \alpha_{1}=\alpha_{2}+\phi$
OR

$$
\alpha_{2}=\alpha_{1}-\phi
$$

Substituting value of $\alpha 1 \& \alpha 2$ in η;

$$
\begin{aligned}
& \eta_{\max }=\frac{\cos (\theta+\phi)+\cos \left(\alpha_{2}+\phi-\alpha_{2}-\phi\right)}{\cos (\theta-\phi)+\cos \left(\alpha_{1}-\phi-\alpha_{1}+\phi\right)} \\
& \eta_{\max }=\frac{\cos (\theta+\phi)+\cos (0)}{\cos (\theta-\phi)+\cos (0)} \\
& \eta_{\max }=\frac{\cos (\theta+\phi)+1}{\cos (\theta-\phi)+1} \\
& \theta=\alpha_{1}+\alpha_{2} \\
& \alpha_{1}=\theta-\alpha_{2} \\
& \alpha_{1}=\theta-\left(\alpha_{1}-\phi\right) \\
& \alpha_{1}=\theta-\alpha_{1}+\phi \\
& 2 \alpha_{1}=\theta+\phi \\
& \alpha_{1}=\frac{\theta+\phi}{2} \ldots \ldots . \text { Similarly,..... } \alpha_{2}=\frac{\theta-\phi}{2}
\end{aligned}
$$

Efficiency Of Spiral Gears

$$
\alpha_{1}=\frac{\theta+\phi}{2} \quad \& \quad \alpha_{2}=\frac{\theta-\phi}{2}
$$

Are conditions for maximum efficiency of spiral gears

$$
\text { From } \triangle P A B,
$$

Axial thrust on driver is;

$$
\begin{aligned}
& F_{a 1}=F \sin \left(\alpha_{1}-\phi\right) \\
& \text { From } \triangle P C D,
\end{aligned}
$$

Axial thrust on driven is;

$$
F_{a 2}=F \sin \left(\alpha_{2}+\phi\right)
$$

Velocity Of Sliding Between Spiral Gears

city Of Sliding Between Spiral Gears

Circumferential velocity/ Tangential velocityof gear 1 at pitch pt;

$$
V_{1}=\omega_{1} \cdot r_{1}
$$

Circumferential velocity/ Tangential velocityof gear 2 at pitch pt;

$$
V_{2}=\omega_{2} \cdot r_{2}
$$

Component of V_{1} along the tooth profile $=V_{1} \sin \alpha_{1}$
Component of V_{2} along the tooth profile $=V_{2} \sin \alpha_{2}$
Velocity of sliding between gear $1 \& 2$ is;

$$
\begin{aligned}
& V_{s}=V_{1} \sin \alpha_{1}+V_{2} \sin \alpha_{2} \\
& V_{s}=\omega_{1} \cdot r_{1} \cdot \sin \alpha_{1}+\omega_{2} \cdot r_{2} \cdot \sin \alpha_{2}
\end{aligned}
$$

- Used for Non-parallel \& Non-intersecting shafts
- It's a special case of spiral gear with shaft angle 90°
- Worm - Threaded screw (I to 8 teeth)
- Worm wheel -Toothed gear

rm \& Worm Wheel

- Large speed reduction upto 100:I
- Worm can easily turn the gear but...
- Gear cannot turn worm
- This locking feature acts as a brake
- Used in conveyor systems/ lifting devices like cranes

minology of Worm \& Worm Wheel

Axial Pitch (P_{a}) :-
Distance measured along axis , frm a point on one tooth to the corresponding point on adjacent tooth.

Axial Pitch of worm = Circular Pitch of worm gear
2. Lead (L) :-

Distance moved by a point on the helical profile, whn worm is rotated through one revolution

$$
\mathrm{L}=\mathrm{n} \cdot \mathrm{p}_{\mathrm{a}}
$$

where,

$$
\begin{aligned}
& \mathrm{L}=\text { Lead of worm } \\
& \mathrm{n}=\text { no. of starts } \\
& \mathrm{pa}=\text { Axial pitch }
\end{aligned}
$$

Terminology of Worm \& Worm Wheel

3.Lead Angle (ঠ) :-

Angle between the tangent to the helix \& line normal to the axis.

$$
\delta=\frac{\pi}{2}-\alpha_{2}=90^{0}-\alpha_{2}
$$

where,
$\alpha_{2}=$ spiral angle of worm
If one thread of worm is developed,
Hypotenuse -Thread
Base - circumference of wheel
Altitude - lead of worm

minology of Worm \& Worm Wheel

Frm fig.

where,

$$
\begin{aligned}
& L=\text { Lead of worm } \\
& d_{2}=P C D \text { of worm }
\end{aligned}
$$

If $\alpha 1$ is the spiral angle of worm gear, thn shaft angle is;

$$
\begin{aligned}
& \alpha_{1}+\alpha_{2}=90^{\circ} \\
& \text { or... } \alpha_{1}=90^{\circ}-\alpha_{2} \\
& \text { But } \ldots, \delta=90^{\circ}-\alpha_{2} \\
& \therefore \alpha_{1}=\delta
\end{aligned}
$$

i.e. Spiral angle of worm gear $\left(\alpha_{1}\right)=$ Lead angle of worm (δ)

Velocity ratio \& Centre Distance Between Worm Gears

city ratio Of Worm Gears

Let,
θ_{2} - angle turned by worm in one revolution;

$$
\theta_{2}=\pi \cdot d_{2} \ldots \ldots \ldots \ldots(1)
$$

θ_{1} - Angle turned by worm gear in one revol;

$$
\theta_{1}=\frac{L}{r_{1}}=\frac{L}{d_{1} / 2}=\frac{2 L}{d_{1}} \ldots \ldots . \text { (2) }
$$

"Velocity ratio" is the ratio of angle turned by worm gear in one revolution of worm; to the angle turned by worm in one revolution.

Velocity ratio Of Worm Gears

\therefore Velocity Ratio $=\frac{\theta_{1}}{\theta_{2}}$
\therefore Velocity'Ratio $=\frac{2 L / d_{2}}{2 \pi}=\frac{L}{\pi \cdot d_{2}}$

Centre Distance Between Worm Gears

$l=$ C.D. between worm \& worm gears $\alpha_{1}=$ Spiral angles for worm gear
$\boldsymbol{\alpha}_{2}=$ Spiral angles for worm
$\mathbf{T}_{1}=$ No. of teeth on worm gear
$T_{2}=$ No. of teeth on worm

$\mathbf{m t}_{\mathbf{1}}=$ Transverse module for worm gear $\mathbf{m t}_{2}=$ Transverse module for worm
$\mathbf{m}_{\mathbf{n}}=$ Normal module for worm \& worm gear
$\mathbf{r}_{1}=\mathrm{PC}$ radius for worm gear
$\mathbf{r}_{2}=\mathrm{PC}$ radius for worm

Centre Distance Between Worm Gears

We know that pitch circle radius of

$$
r=\frac{m_{t} \cdot T}{2}
$$

Pitch circle radius of worm gear is,

$$
r_{1}=\frac{m_{t 1} \cdot T_{1}}{2}
$$

Pitch circle radius of worm is,

$$
r_{2}=\frac{m_{t 2} \cdot T_{2}}{2}
$$

The centre distance between worm \& worm gear is,

$$
\begin{aligned}
& l=r l+r 2 \\
& \therefore l=\frac{m_{t 1} \cdot T_{1}}{2}+\frac{m_{t 2} \cdot T_{2}}{2} \\
& \therefore l=\frac{m_{n}}{\cos \alpha_{1}} \cdot \frac{T_{1}}{2}+\frac{m_{n}}{\cos \alpha_{2}} \cdot \frac{T_{2}}{2} \\
& \therefore l=\frac{m_{n}}{2} \cdot\left[\frac{T_{1}}{\cos \alpha_{1}}+\frac{T_{2}}{\cos \alpha_{2}}\right] \\
& \therefore l=\frac{m_{t 2} \cos \alpha_{2}}{2} \cdot\left[\frac{T_{1}}{\cos \alpha_{1}}+\frac{T_{2}}{\cos \alpha_{2}}\right] \\
& \therefore l=\frac{m_{t 2}}{2} \cdot\left[\frac{T_{1} \cos \alpha_{2}}{\cos \alpha_{1}}+\frac{T_{2} \cos \alpha_{2}}{\cos \alpha_{2}}\right]
\end{aligned}
$$

Centre Distance Between Worm Gears

$$
\therefore l=\frac{m_{t 2}}{2} \cdot\left[\frac{T_{1} \cos \left(90^{\circ}-\alpha_{1}\right)}{\cos \alpha_{1}}+T_{2}\right]
$$

$\therefore l=\frac{m_{t 2}}{2} \cdot\left[\frac{T_{1} \sin \alpha_{1}}{\cos \alpha_{1}}+T_{2}\right]$
$\therefore l=\frac{m_{t 2}}{2} \cdot\left[T_{1} \tan \alpha_{1}+T_{2}\right]$
$\left.\therefore l=\frac{m_{t 2}}{2} \cdot\left[T_{1} \tan \delta+T_{2}\right] \ldots \ldots . . \ldots \ldots \ldots \alpha_{1}=\delta\right]$
This eq. gives the centre distance between worm \& worm gear

Worm \& worm gear is a special case of spiral gears with shaft angle 90^{0}. Therefore, efficiency is same as spiral gears

$$
\eta=\frac{\cos \alpha_{1} \cdot\left(\cos \alpha_{2}+\phi\right)}{\cos \alpha_{2} \cdot\left(\cos \alpha_{1}-\phi\right)} \ldots \ldots . .[\text { Whn worm gear is driver }]
$$

$$
\text { Put }, \alpha_{1}=\delta ; \ldots \& \ldots \alpha_{2}=90^{\circ}-\alpha_{1} ;
$$

$$
\eta=\frac{\cos \delta \cdot \cos \left(90^{\circ}-\alpha_{1}+\phi\right)}{\cos \left(90^{\circ}-\alpha_{1}\right) \cdot \cos (\delta-\phi)}
$$

$$
\eta=\frac{\cos \delta \cdot \cos \left[90^{\circ}-(\delta-\phi)\right]}{\cos \left(90^{\circ}-\delta\right) \cdot \cos (\delta-\phi)}
$$

$$
\eta=\frac{\cos \delta \cdot \sin (\delta-\phi)}{\sin \delta \cdot \cos (\delta-\phi)}
$$

$$
\therefore \eta=\frac{\tan (\delta-\phi)}{\tan \delta}
$$

Where,
Φ - Friction angle

Maximum efficiency is same as spiral gears

$$
\begin{aligned}
& \eta_{\max }=\frac{\cos (\theta+\phi)+1}{\cos (\theta-\phi)+1} \\
& \eta_{\max }=\frac{\cos \left(90^{\circ}+\phi\right)+1}{\cos \left(90^{\circ}-\phi\right)+1} \\
& \eta_{\max }=\frac{-\sin \phi+1}{\sin \phi+1} \\
& \eta_{\max }=\frac{1-\sin \phi}{1+\sin \phi}
\end{aligned}
$$

Whn worm is driver \& worm gear is driven;

$$
\begin{aligned}
& \eta=\frac{\cos \alpha_{2} \cdot\left(\cos \alpha_{1}+\phi\right)}{\cos \alpha_{1} \cdot\left(\cos \alpha_{2}-\phi\right)} \ldots \ldots \ldots \\
& \text { Put, } \alpha_{1}=\delta ; \ldots \& \ldots \alpha_{2}=90^{\circ}-\alpha_{1} ; \\
& \eta=\frac{\cos \left(90^{0}-\alpha_{1}\right) \cos (\delta+\phi)}{\cos \delta \cdot \cos \left[\left(90^{0}-\alpha_{1}\right)-\phi\right]} \\
& \eta=\frac{\cos \left(90^{0}-\delta\right) \cdot \cos (\delta+\phi)}{\cos \delta \cdot \cos \left[90^{0}-(\delta+\phi)\right]} \\
& \eta=\frac{\sin \delta \cdot \cos (\delta+\phi)}{\cos \delta \cdot \sin (\delta+\phi)}
\end{aligned}
$$

$$
\therefore \eta=\frac{\tan \delta}{\tan (\delta+\phi)}
$$

Where,
Φ - Friction angle

Maximum efficiency is not affected when worm is driver

$$
\begin{aligned}
& \eta_{\max }=\frac{\cos (\theta+\phi)+1}{\cos (\theta-\phi)+1} \\
& \eta_{\max }=\frac{\cos \left(90^{\circ}+\phi\right)+1}{\cos \left(90^{\circ}-\phi\right)+1} \\
& \eta_{\max }=\frac{-\sin \phi+1}{\sin \phi+1} \\
& \eta_{\max }=\frac{1-\sin \phi}{1+\sin \phi}
\end{aligned}
$$

Force analysis of worm \& worm gears is same as that of the spiral gears

Thus, tangential force acting on worm gear is given by;

$$
F_{t 1}=F \cos \left(\alpha_{1}-\phi\right)
$$

\& Torque transmitted by worm gear is;

$$
M_{t 1}=F_{t 1} \times r_{1}
$$

$\therefore M_{t 1}=F \cos \left(\alpha_{1}-\phi\right) \times r_{1}$
$\therefore M_{t 1}=F \cos (\delta-\phi) \times r_{1} \ldots \ldots \ldots \ldots \ldots .\left[\because \alpha_{1}=\delta\right]$

e Analysis Of Worm \& Worm Gears

Force analysis of worm \& worm gears is same as that of the spiral gears

Thus, tangential force acting on worm is given by;

$$
F_{t 2}=F \cos \left(\alpha_{2}+\phi\right)
$$

\& Torque transmitted by worm is;

$$
\begin{aligned}
& M_{t 2}=F_{t 2} \times r_{2} \\
& \therefore M_{t 2}=F \cos \left(\alpha_{2}+\phi\right) \times r_{2} \\
& \therefore M_{t 2}=F \cos \left(90^{0}-\alpha_{1}+\phi\right) \times r_{2} \\
& \therefore M_{t 2}=F \cos \left[\left(90^{0}-\left(\alpha_{1}-\phi\right)\right] \times r_{2}\right. \\
& \therefore M_{t 2}=F \sin \left(\alpha_{1}-\phi\right) \times r_{2} \\
& \therefore M_{t 2}=F \sin (\delta-\phi) \times r_{2}
\end{aligned}
$$

Gear Trains

A gear train is two or more gears working together by meshing their teeth and turning each other in a system to generate power and speed.

- It reduces speed and increases torque.
- It creates large gear ratio
- Nature of train depends upon
$>$ velocity ratio required \&
$>$ the relative position of axes of shafts

Types Of Gear Trains

Depending upon arrangement of wheels:
1] Simple Gear Train
2] Compound Gear Train
3] Reverted Gear Train
4] Epicyclic Gear Train

Copyight 1996 by Marshall Enim

Types Of Gear Trains

Copyright 1998 by Marshall Brim

1] Simple Gear Train - Only one gear on each shaft
2] Compound Gear Train - more than one gear on a shaft

3] Reverted Gear Train - First \& last gear are co-axial

4] Epicyclic Gear Train - axis move over the other fixed axis

Simple Gear Trains

- Only one gear on each shaft
- Distance between two shaft is

- The direction of motion of driven gear is opposite to driver gear.

Simple Gear Trains

Let,
NA = Speed of gear A(driver) in rpm
$N B=$ Speed of gear B (driven) in rpm
TA = Number of teeth on gear A
TB = Number of teeth on gear B

Simple Gear Trains

Speed Ratio/ Gear ratio/ Velocity ratio is given by;

$$
\text { Speed' Ratio }=\frac{\text { speed }(\text { driver })}{\text { speed }(\text { driven })}
$$

$$
G R=\frac{N_{A}}{N_{B}}=\frac{T_{B}}{T_{A}}
$$

Train Value is given by;
Train Value $=\frac{N_{B}}{N_{A}}=\frac{T_{A}}{T_{B}}$
\therefore Train Value $=\frac{1}{\text { Speed Ratio }}$

Simple Gear Trains

When distance between two gears is larger, motion is transmitted by;

1. Providing large sized gear
2. Providing no. of intermediate gears

Simple Gear Trains

- Intermediate gear is known as Idler Gear
- Function of idler gear is to change the direction of rotation
- It has no effect on gear ratio

Simple Gear Trains

- Odd number of intermediate gears - motion of driver \& driven is like
- Even number of intermediate gears - motion of driver \& driven gear is Unlike

Simple Gear Trains

Let,
NA = Speed of driver gear in rpm
NB = Speed of intermediate gear in rpm
$N C=$ Speed of driven gear in rpm
TA = Number of teeth on driver gear
TB = Number of teeth on intermediate gear
TC= Number of teeth on driven gear

Simple Gear Trains

Driver gear 1 is in mesh with intermediate gear 2, Speed Ratio is given by; $\quad \frac{N_{A}}{N_{B}}=\frac{T_{B}}{T_{A}}$.
Similarly intermediate gear 2 is in mesh with driven gear 3, Speed Ratio is given by;

$$
\frac{N_{B}}{N_{C}}=\frac{T_{C}}{T_{B}} \ldots \ldots \ldots \ldots \ldots . \text { (2) }
$$

Speed Ratio of gear train is given by; multiplying (1) \& (2)

$$
\frac{N_{A}}{N_{B}} \times \frac{N_{B}}{N_{C}}=\frac{T_{B}}{T_{A}} \times \frac{T_{C}}{T_{B}}
$$

$$
\therefore \frac{N_{A}}{N_{C}}=\frac{T_{C}}{T_{A}}
$$

Simple Gear Trains

i.e., Speed Ratio $=\frac{\text { Speed of driver }}{\text { Speed of driven }}=\frac{\text { No.of teeth on driven }}{\text { No.of teeth on driver }}$

Train Value $=\frac{\text { Speed of driven }}{\text { Speed of driver }}=\frac{\text { No.of teeth on driver }}{\text { No.of teeth on driven }}$
Speed Ratio \& Train Value is independent of size \& no. of intermediate gears (Idler Gears).

Purpose is;

1) To connect gears where a large centre distance is required
2) To obtain desired direction of motion of driven gear

Simple Gear Trains

Application:

a) to connect gears where a large center distance is required
b) to obtain desired direction of motion of the driven gear (CW or CCW)
c) to obtain high speed ratio

Compound Gear train

Compound Gear train

- More than one gear on a shaft
- Distance between driver \& driven has to be bridged
- Great speed ratio is required

mpound Gear train

- Each intermediate shaft has two gears rigidly fixed to it , so that they may have same speed
- One of these gears meshes with driver \& other with driven

mpound Gear train

Gear A is driving gear mounted on a shaft
Gear B \& C are compound gears mounted on one shaft
Gear D \& E are compound gears mounted on one shaft
Gear F is driven gear mounted on a shaft

Compound Gear Trains

Let,
$\mathrm{N}_{\mathrm{A}}=$ Speed of driver gear A in rpm
$T_{A}=$ Number of teeth on driver gear A
$N_{B}, N_{C}, \ldots, N_{F}=$ Speed of respectiver gears in rpm $T_{B}, T_{C}, \ldots, T_{F}=$ Number of teeth on respective gears

Compound Gear train

Driver gear A is in mesh with gear B , Thus Speed Ratio is ;

Similarly,Gear C is in mesh with gear D,Speed Ratio is;

$$
\frac{N_{C}}{N_{D}}=\frac{T_{D}}{T_{C}} \ldots \ldots \ldots \ldots \ldots . .(2)
$$

Similarly,Gear E is in mesh with gear F,Speed Ratio is;

$$
\frac{N_{E}}{N_{F}}=\frac{T_{F}}{T_{E}} \ldots \ldots \ldots \ldots \ldots . .(3)
$$

Compound Gear train

Speed Ratio of gear train is given by; multiplying (1), (2) \& (3)

$$
\frac{N_{A}}{N_{B}} \times \frac{N_{C}}{N_{D}} \times \frac{N_{E}}{N_{F}}=\frac{T_{B}}{T_{A}} \times \frac{T_{D}}{T_{C}} \times \frac{T_{F}}{T_{E}}
$$

But, $\mathrm{N}_{\mathrm{B}}=\mathrm{N}_{\mathrm{C}}$ [as mounted on same shaft]
$N_{D}=N_{E}$ [as mounted on same shaft]

$$
\therefore \frac{N_{A}}{N_{C}}=\frac{T_{B} \times T_{D} \times T_{F}}{T_{A} \times T_{C} \times T_{E}}
$$

Design of Spur Gear Trains

Let,
$N_{A} \& N_{B}=$ Speed of driver \& driven
$T_{A} \& T_{B}=$ Number of teeth on driver \& driven
$d_{A} \& d_{B}=P C D$ of driver \& driven
$p_{c}=$ circular pitch
Distance between centres of two shafts;

$$
x=\frac{d_{A}+d_{B}}{2}
$$

\& Speed Ratio/ Velocity Ratio;

$$
\frac{N_{A}}{N_{B}}=\frac{d_{B}}{d_{A}}=\frac{T_{B}}{T_{A}}
$$

Compound Gear Trains

i.e., Speed Ratio $=\frac{\text { Speed of 1st driver }}{\text { Speed of last driven }}$

$$
=\frac{\text { Product of No.of teeth on drivens }}{\text { Product of No.of teeth on drivers }}
$$

And

$$
\begin{aligned}
\text { Train Value } & =\frac{\text { Speed of last driven }}{\text { Speed of 1st driver }} \\
& =\frac{\text { Product of No.of teeth on drivers }}{\text { Product of No.of teeth on drivens }}
\end{aligned}
$$

- Much larger speed reduction frm $1^{\text {st }}$ to last shaft
- with small gears

Reverted Gear train

Concentric input \& output shafts

Reverted Gear train

When the axes of first driver \& last driven are co-axial, then the gear train is known as Reverted Gear Train.

These are used in speed reducers, clocks and machine tools.

Reverted Gear train

Motion of First \& Last Gear is Like!

- Gear A drives Gear B

- opposite direction
- Gear B \& Gear C are compound gear - same direction
- Gear C \& Gear D
- Opposite direction
- Gear D \& Gear A are compound gear - same direction

Let,
= Speed of driver gear A in rpm
$T_{A}=$ Number of teeth on
driver gear A
$=\mathrm{PC}$ radius of gear A
Similarly;

$N_{C}, N_{D}=$ Speed of respectiver gears in rpm
$T_{C}, T_{D}=$ Number of teeth on respective gears
${ }_{C}, r_{D}=P C$ radius of respective gears

Reverted Gear train

Distance between centres of shafts of Gears A \& B And

Reverted Gear train

Also module/ circular

 pitch for all gears is assumed to be same;

Reverted Gear train

i.e., Speed Ratio $=\frac{\text { Speed of 1st driver }}{\text { Speed of last driven }}$
$=\frac{\text { Product of No.of teeth on drivens }}{\text { Product of No.of teeth on drivers }}$
And

$$
\therefore \frac{N_{A}}{N_{B}}=\frac{T_{B} \times T_{D}}{T_{A} \times T_{C}} \ldots \ldots \ldots . \text { (3) }
$$

Frm eq. (1), (2) \& (3) --- we can determine No. of teeth for given centre distance, speed ratio \& module

Reverted Gear train

- Used in:-
- Automotive transmissions
- Lathe back gears
- Industrial speed reducers
- Clocks

Epicyclic Gear train

It is the system of epicyclic gears in which at least one wheel axis itself revolves around another fixed axis.

Epicyclic Gear train

Epicyclic Gear train

Epi - Upon
Cyclic -Around
Sun wheel

Gear A \& Arm C - Rotates about common fixed axis at point O1

Gear B - Rotates about axis at point O2 also revolves upon gear A at O1

Epicyclic Gear train

Arm C fixed - Simple gear train
Sun wheel
Gear A Fixed - Gear B rotates upon \& around Gear A (Epicyclic Gear train)

Epicyclic Gear train

Used in :-
Transmitting high velocity ratios
Moderate size gears
Lesser space
Applications:-
Back gear of lathe Differential gears of automobiles
Hoists
Pulley Blocks
Wrist watches

Velocity Ratio of Epicyclic Gear Train

I. Tabular Method
2. Algebraic Method

Velocity Ratio of Epicyclic Gear Train

Tabular Method:-

Steps:

1) Consider arm C fixed

When Gear A makes one revolution clockwise; = + I
Gear B will make revolutions
$=-T_{A} / T_{B}$ (anticlockwise)

Ist Row

$$
\left[\begin{array}{l}
\because \frac{N_{B}}{N_{A}}=-\frac{T_{A}}{T_{B}} \\
\therefore N_{B}=-\frac{T_{A}}{T_{B}} \ldots \ldots . .\left(\because N_{A}=1\right)
\end{array}\right]
$$

Velocity Ratio of Epicyclic Gear Train

Tabular Method :-
Steps:
2) When Gear A makes revolution

clockwise; $=+\boldsymbol{x}$
Gear B will make revolutions
$=-x T_{A} / T_{B}$ (anticlockwise)
$2^{\text {nd }}$ Row

Velocity Ratio of Epicyclic Gear Train

Tabular Method :-
Steps:
 given revolution $=+y$
3) Each element of epicyclic gear train is
$3{ }^{\text {rd }}$ Row

Ratio of Epicyclic Gear Train

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B

pcity Ratio of Epicyclic Gear Train

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{\mathrm{B}}$

Ratio of Epicyclic Gear Train

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{B}$
2	Arm C Fixed - Gear A rotates through $+\boldsymbol{x}$ Revolutions	0	$+x$	$-x T_{A} / T_{B}$

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{B}$
2	Arm C Fixed - Gear A rotates through $+\boldsymbol{x}$ Revolutions	0	$+\boldsymbol{x}$	$-\boldsymbol{x} T_{A} / T_{B}$
3	Add $+\boldsymbol{y}$ revolutions to all elements	$+\boldsymbol{y}$	$+\boldsymbol{y}$	$+\boldsymbol{y}$

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{B}$
2	Arm C Fixed - Gear A rotates through $+\boldsymbol{x}$ Revolutions	0	$+\boldsymbol{x}$	$-\boldsymbol{x} \mathrm{T}_{\mathrm{A}} / \mathrm{T}_{\mathrm{B}}$
3	Add $+\boldsymbol{y}$ revolutions to all elements	$+\boldsymbol{y}$	$+\boldsymbol{y}$	$+\boldsymbol{y}$
4	Total Motion (row 2 + 3)	$+\boldsymbol{y}$	$\boldsymbol{x}+\boldsymbol{y}$	$\boldsymbol{y}-\boldsymbol{x} \mathrm{T}_{A} / T_{\mathrm{B}}$

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{\mathrm{B}}$
2	Arm C Fixed - Gear A rotates through $+\boldsymbol{x}$ Revolutions	0	$+\boldsymbol{x}$	$-\boldsymbol{x} \mathrm{T}_{\mathrm{A}} / \mathrm{T}_{\mathrm{B}}$
3	Add $+\boldsymbol{y}$ revolutions to all elements	$+\boldsymbol{y}$	$+\boldsymbol{y}$	$+\boldsymbol{y}$
4	Total Motion (row 2 + 3)	$+\boldsymbol{y}$	$\boldsymbol{x}+\boldsymbol{y}$	$\boldsymbol{y}-\boldsymbol{x} \mathrm{T}_{\mathrm{A}} / T_{\mathrm{B}}$

locity Ratio of Epicyclic Gear Train

Algebraic Method :-
Steps:

1) In this method each element of epicyclic gear train relative to arm is set down in the ${ }^{\text {Sun whel }}$ form of eq.
2) No. of eq. depends upon no. of elements in gear train
3) Two Conditions given :-

- one element fixed
- other has specified motion

Velocity Ratio of Epicyclic Gear Train

Algebraic Method :-
Steps:

1) Let, Arm C be fixed

Speed of gear A relative to Arm C

$$
=N_{A}-N_{C}
$$

Speed of gear B relative to Arm C

$$
=N_{B}-N_{C}
$$

Velocity Ratio of Epicyclic Gear Train

Algebraic Method :-

Gear A meshes with Gear B. thus, they revolve in Opposite Direction;

$$
\therefore \frac{N_{B}-N_{C}}{N_{A}-N_{C}}=-\frac{T_{A}}{T_{B}}
$$

Since Arm C is fixed; $\quad N_{C}=0$

$$
\therefore \frac{N_{B}}{N_{A}}=-\frac{T_{A}}{T_{B}}
$$

If Gear A is fixed; $\quad N_{A}=0$

$$
\therefore \frac{N_{B}-N_{C}}{0-N_{C}}=-\frac{T_{A}}{T_{B}}
$$

Velocity Ratio of Epicyclic Gear Train

Algebraic Method :-

If Gear A is fixed; $\quad N_{A}=0$

$$
\begin{aligned}
& \therefore \frac{N_{B}-N_{C}}{0-N_{C}}=-\frac{T_{A}}{T_{B}} \\
& \therefore \frac{N_{B}-N_{C}}{-N_{C}}=-\frac{T_{A}}{T_{B}} \\
&-\frac{N_{B}}{N_{C}}+1=-\frac{T_{A}}{T_{B}} \\
& \therefore \frac{N_{B}}{N_{C}}=1+\frac{T_{A}}{T_{B}}
\end{aligned}
$$

1) In an epicyclic gear train, an arm carries two gears A \& B having 36 and 45 teeth resp. If the arm rotates at 150 rpm , in anticlockwise direction about the centre of gear A which is fixed, determine the speed of gear B.
If the gear A instead of being fixed, makes 300 rpm in the clockwise direction, what will be the speed of gear B?

Numerical

Given :- TA=36
 TB=45
 $\mathrm{Nc}=150 \mathrm{rpm}$ (anticlockwise)

Ratio of Epicyclic Gear Train

Step No.	Conditions of Motion	Revolution of Elements		
		$\begin{gathered} \text { Arm } \\ \text { C } \end{gathered}$	Gear A	Gear B

pcity Ratio of Epicyclic Gear Train

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{\mathrm{B}}$

Ratio of Epicyclic Gear Train

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{B}$
2	Arm C Fixed - Gear A rotates through $+\boldsymbol{x}$ Revolutions	0	$+x$	$-x T_{A} / T_{B}$

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{B}$
2	Arm C Fixed - Gear A rotates through $+\boldsymbol{x}$ Revolutions	0	$+\boldsymbol{x}$	$-\boldsymbol{x} T_{A} / T_{B}$
3	Add $+\boldsymbol{y}$ revolutions to all elements	$+\boldsymbol{y}$	$+\boldsymbol{y}$	$+\boldsymbol{y}$

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{B}$
2	Arm C Fixed - Gear A rotates through $+\boldsymbol{x}$ Revolutions	0	$+\boldsymbol{x}$	$-\boldsymbol{x} T_{\mathrm{A}} / \mathrm{T}_{\mathrm{B}}$
3	Add $+\boldsymbol{y}$ revolutions to all elements	$+\boldsymbol{y}$	$+\boldsymbol{y}$	$+\boldsymbol{y}$
4	Total Motion (row 2 + 3)	$+\boldsymbol{y}$	$\boldsymbol{x}+\boldsymbol{y}$	$\boldsymbol{y}-\boldsymbol{x} \mathrm{T}_{A} / T_{\mathrm{B}}$

Step		Revolution of Elements		
No.	Conditions of Motion	Arm C	Gear A	Gear B
1	Arm C Fixed - Gear A rotates through +1 revolution i.e., clockwise	0	+1	$-T_{A} / T_{\mathrm{B}}$
2	Arm C Fixed - Gear A rotates through $+\boldsymbol{x}$ Revolutions	0	$+\boldsymbol{x}$	$-\boldsymbol{x} \mathrm{T}_{\mathrm{A}} / \mathrm{T}_{\mathrm{B}}$
3	Add $+\boldsymbol{y}$ revolutions to all elements	$+\boldsymbol{y}$	$+\boldsymbol{y}$	$+\boldsymbol{y}$
4	Total Motion (row 2 + 3)	$+\boldsymbol{y}$	$\boldsymbol{x}+\boldsymbol{y}$	$\boldsymbol{y}-\boldsymbol{x} \mathrm{T}_{\mathrm{A}} / T_{\mathrm{B}}$

merical

Speed of gear B when A is fixed;
Speed of arm $=150 \mathrm{rpm} ;$ Thus, frm $4^{\text {th }}$ row $y=+150 \mathrm{rpm}$

Also, gear A is fixed;

$$
\begin{aligned}
& x+y=0 \\
& x=-y=-150 r p m
\end{aligned}
$$

Speed of gear B,

$$
N_{B}=y-x \times \frac{T_{A}}{T_{B}}
$$

Cpmpound Epicyclic Gear train

Compound Epicyclic Gear train

It consists of;

- Two co-axial shafts S1 \& S2
- Annulus gear A which is fixed
- Compound gear/Planet gear B-C
- Sun gear D
- Arm H

- The Sun gear is co-axial with annulus gear \& arm

Compound Epicyclic Gear train

It consists of;

- Two co-axial shafts S1 \& S2
- Annulus gear A which is fixed
- Compound gear/Planet gear B-C
- Sun gear D
- Arm H

- The Sun gear is co-axial with annulus gear \& arm

Compound Epicyclic Gear train

- Annulus gear A - meshes with Gear B
- Sun gear D - meshes with Gear C

- When annulus gear is fixed - Sun gear provides the drive \&
- When Sun gear is fixed - Annulus gear provides the drive
- In both cases Arm acts as a follower

pcity Ratio of Epicyclic Gear Train

Stp	Conditions of Motion	Revolution of Elements			
		Arm No.	Gear D	Compond Gear B-C	Gear A

Velocity Ratio of Epicyclic Gear Train

Gear D meshes with Gear C;

$$
\therefore \frac{N_{C}}{N_{D}}=-\frac{T_{D}}{T_{C}} \quad \therefore N_{C}=-\frac{T_{D}}{T_{C}}
$$

Gear A meshes with Gear B;

$$
\begin{aligned}
& \therefore \frac{N_{A}}{N_{B}}=\frac{T_{B}}{T_{A}} \\
\therefore & N_{A}=N_{B} \times \frac{T_{B}}{T_{A}}
\end{aligned}
$$

$N_{B}=N_{C}$; Compound Gear

$$
\therefore N_{A}=-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}
$$

Stp No.	Revolution of Elements				
	Conditions of Motion	Arm H $\left(\mathrm{N}_{H}\right)$	Gear D $\left(\mathrm{N}_{\mathrm{D}}\right)$	Comp- ound (ear B-C $\left(\mathrm{N}_{B} \& \mathrm{~N}_{\mathrm{C}}\right)$	Gear A $\left(\mathrm{N}_{A}\right)$
	Arm fixed - Gear D rotates through +1 revolution	0	+1	$-T_{D} / T_{C}$	$-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$

Stp No.	Conditions of Motion	Revolution of Elements			
	Arm H	Gear D	Comp- ound Gear B-C	Gear A	
1	Arm fixed - Gear D rotates through +1 revolution	0	+1	$-T_{D} / T_{C}$	$-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
2	Arm fixed - Gear D rotates through $+\boldsymbol{x}$ revolutions	$\mathbf{0}$	$+\boldsymbol{x}$	$-x \mathrm{~T}_{\mathrm{D}} / T_{C}$	$-x \cdot \frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$

Stp No.	Conditions of Motion	Revolution of Elements			
		$\begin{gathered} \text { Arm } \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \text { Gear } \\ \mathrm{D} \end{gathered}$	Compound Gear B-C	Gear A
1	Arm fixed - Gear D rotates through +1 revolution	0	+1	$-T_{D} / T_{C}$	$-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
2	Arm fixed - Gear D rotates through $+\boldsymbol{x}$ revolutions	0	+ \boldsymbol{x}	${ }^{-x} \mathrm{~T}_{\mathrm{D}} / \mathrm{T}_{\mathrm{C}}$	$-x \cdot \frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
3	Add $+y$ revolutions to all elements	+ ${ }^{\text {l }}$	+ +	+ ${ }^{\text {l }}$	+ ${ }^{\text {l }}$
					${ }_{3}^{28}$

$\begin{aligned} & \text { Stp } \\ & \text { No. } \end{aligned}$	Conditions of Motion	Revolution of Elements			
		$\begin{array}{\|c} \text { Arm } \\ \mathrm{H} \end{array}$	Gear D	Compound Gear B-C	Gear A
1	Arm fixed - Gear D rotates through +1 revolution	0	+1	$-T_{D} / T_{C}$	$-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
2	Arm fixed - Gear D rotates through $+x$ revolutions	0	+ \boldsymbol{x}	${ }^{-x} \mathrm{~T}_{\mathrm{D}} / \mathrm{T}_{\mathrm{C}}$	$-x \cdot \frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
3	Add $+y$ revolutions to all elements	+ ${ }^{\text {l }}$			
4	Total Motion	+ +	$x+y$	$y-x T_{D} / T_{C}$	$y-x \cdot \frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$

nerical

city Ratio of Epicyclic Gear Train

Stp No.	Conditions of Motion	Revolution of Elements			
		Arm EF	Gear C	Gear B	Gear A

Velocity Ratio of Epicyclic Gear Train

Gear D meshes with Gear C;

$$
\therefore \frac{N_{C}}{N_{D}}=-\frac{T_{D}}{T_{C}} \quad \therefore N_{C}=-\frac{T_{D}}{T_{C}}
$$

Gear A meshes with Gear B;

$$
\begin{aligned}
& \therefore \frac{N_{A}}{N_{B}}=\frac{T_{B}}{T_{A}} \\
\therefore & N_{A}=N_{B} \times \frac{T_{B}}{T_{A}}
\end{aligned}
$$

$N_{B}=N_{C}$; Compound Gear

$$
\therefore N_{A}=-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}
$$

Stp	Conditions of Motion	Revolution of Elements			
No.		$\begin{gathered} \text { Arm } \\ \text { EF } \end{gathered}$	$\begin{gathered} \text { Gear } \\ \text { C } \end{gathered}$	Gear B	Gear A
1	Arm fixed - Gear C rotates through +1 revolution	0	+1	$-T_{C} / T_{B}$	$-\frac{T_{C}}{T_{B}} \times \frac{T_{B}}{T_{A}}=-\frac{T_{C}}{T_{A}}$
2	Arm fixed - Gear D rotates through $+x$ revolutions	0	+ x	$-x T_{C} / T_{B}$	$-x \times \frac{T_{C}}{T_{A}}$

Stp No.	Conditions of Motion	Revolution of Elements			
		Arm EF	$\begin{gathered} \text { Gear } \\ \text { C } \end{gathered}$	Gear B	Gear A
1	Arm fixed - Gear C rotates through +1 revolution	0	+1	$-T_{C} / T_{B}$	$-\frac{T_{C}}{T_{B}} \times \frac{T_{B}}{T_{A}}=-\frac{T_{C}}{T_{A}}$

Stp No.	Conditions of Motion	Revolution of Elements			
	Arm H	Gear D	Comp- ound Gear B-C	Gear A	
1	Arm fixed - Gear D rotates through +1 revolution	0	+1	$-T_{\mathrm{D}} / T_{C}$	$-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
2	Arm fixed - Gear D rotates through $+\boldsymbol{x}$ revolutions	$\mathbf{0}$	$+\boldsymbol{x}$	$-x \mathrm{~T}_{\mathrm{D}} / T_{\mathrm{C}}$	$-x \cdot \frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$

$\begin{aligned} & \text { Stp } \\ & \text { No. } \end{aligned}$	Conditions of Motion	Revolution of Elements			
		$\begin{array}{\|c} \text { Arm } \\ \mathrm{H} \end{array}$	Gear D	Compound Gear B-C	Gear A
1	Arm fixed - Gear D rotates through +1 revolution	0	+1	$-T_{D} / T_{C}$	$-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
2	Arm fixed - Gear D rotates through $+x$ revolutions	0	+ \boldsymbol{x}	$-x T_{D} / T_{C}$	$-x \cdot \frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
3	Add $+y$ revolutions to all elements	+ +	+ ${ }^{\text {l }}$	+ ${ }^{\text {l }}$	+ ${ }^{\text {l }}$
					29 0

Stp No.	Conditions of Motion	Revolution of Elements			
		Arm H	Gear D	Compound Gear B-C	Gear A
1	Arm fixed - Gear D rotates through +1 revolution	0	+1	$-T_{D} / T_{C}$	$-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
2	Arm fixed - Gear D rotates through $+\boldsymbol{x}$ revolutions	0	+ \boldsymbol{x}	$-x \mathrm{~T}_{\mathrm{D}} / \mathrm{T}_{\mathrm{C}}$	$-x \cdot \frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$
3	Add $+y$ revolutions to all elements	+ \boldsymbol{y}	+ \boldsymbol{y}	+ \boldsymbol{y}	+ \boldsymbol{y}
4	Total Motion	+ \boldsymbol{y}	$x+y$	$\boldsymbol{y}-\boldsymbol{x} \mathrm{T}_{\mathrm{D}} / \mathrm{T}_{\mathrm{C}}$	$y-x \cdot \frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}$

Velocity Ratio of Epicyclic Gear Train

Gear D meshes with Gear C;

$$
\therefore \frac{N_{C}}{N_{D}}=-\frac{T_{D}}{T_{C}} \quad \therefore N_{C}=-\frac{T_{D}}{T_{C}}
$$

Gear A meshes with Gear B;

$$
\begin{aligned}
& \therefore \frac{N_{A}}{N_{B}}=\frac{T_{B}}{T_{A}} \\
\therefore & N_{A}=N_{B} \times \frac{T_{B}}{T_{A}}
\end{aligned}
$$

$N_{B}=N_{C}$; Compound Gear

$$
\therefore N_{A}=-\frac{T_{D}}{T_{C}} \times \frac{T_{B}}{T_{A}}
$$

Epicyclic Gear train

A small gear at the center called the sun, medium sized gears called the planets and a large external gear called the ring gear.

Epicyclic Gear train

Planetary gear trains have several advantages. They have higher gear ratios. They are popular for automatic transmissions in automobiles. They are also used in bicycles for controlling power of pedaling automatically or manually. They are also used for power train between internal combustion engine and an electric motor.

Epicyclic Gear train

Basic Theory
Suppose gear C is fixed and the arm A makes one revolution. Determine how many revolutions the planet gear B makes.
Step 1: revolve all elements once about the center.
Step 2: identify that C should be fixed and rotate it backwards one revolution keeping the arm fixed as it should only do one revolution in total. Work out the revolutions of B.
Step 3: add them up and we find the total revolutions of C is zero and for the arm is 1 .

Torque \& Efficiency

The power transmitted by a torque $T N$-m applied to a shaft rotating at $\mathrm{Nrev} / \mathrm{min}$ is given by:

$$
P=\frac{2 \pi N T}{60}
$$

In an ideal gear box, the input and output powers are the same so;

$$
\begin{aligned}
& P=\frac{2 \pi N_{1} T_{1}}{60}=\frac{2 \pi N_{2} T_{2}}{60} \\
& N_{1} T_{1}=N_{2} T_{2} \Rightarrow \frac{T_{2}}{T_{1}}=\frac{N_{1}}{N_{2}}=G R
\end{aligned}
$$

Torque \& Efficiency

It follows that if the speed is reduced, the torque is increased and vice versa. In a real gear box, power is lost through friction and the power output is smaller than the power input. The efficiency is defined as:

$$
\eta=\frac{\text { Power out }}{\text { Power } \text { In }}=\frac{2 \pi \times N_{2} T_{2} \times 60}{2 \pi \times N_{1} T_{1} \times 60}=\frac{N_{2} T_{2}}{N_{1} T_{1}}
$$

Because the torque in and out is different, a gear box has to be clamped in order to stop the case or body rotating. A holding torque T3 must be applied to the body through the clamps.

Torque \& Efficiency

The total torque must add up to zero.

$$
T_{1}+T_{2}+T_{3}=0
$$

If we use a convention that anticlockwise is positive and clockwise is negative we can determine the holding torque.
 The direction of rotation of the output shaft depends on the design of the gear box.

www.mekanizmalar.com

Flash Automatic Transmission Animation

http://www.howstuffworks.com/differential2.htm
http://www.howstuffworks.com/transmission.htm

Applications

Applications

First Gear

Applications

Second Gear

Applications

Applications

Applications

Applications

Fourth Gear

Applications

Applications

Applications

Applications

Automotive Gears: Gears play an important role in trucks, car, buses, motor bikes and even geared cycles. These gears control speed and include gears like ring and pinion, spiral gear, hypoid gear, hydraulic gears, reduction gearbox.

Applications

Depending on the size of the vehicles, the size of the gears also varies. There are low gears covering a shorter distance and are useful when speed is low. There are high gears also with larger number of teeth.

Applications

Applications

Conveyor Systems: Conveyor is a mechanical apparatus for carrying bulk material from place to place at a controlled rate; for example an endless moving belt or a chain of receptacles. There are various types of conveyors that are used for different material handling needs.

Applications

Agro Industry: All agro machinery consists of different types of gears depending upon their function and property. Different gears are used differently in the industry.

Wind Turbine: When the rotor rotates, the load on the main shaft is very heavy. It runs with approximate 22 revolutions per minute but generator has to go a lot faster. It cannot use the turning force to increase the number of revolutions and that is why wind turbine uses gear to increase the speed.

Applications

Power Station:

Helical gears - Are used to minimise noise and power losses.
Bevel gears - Used to change the axis of rotational motion.
Spur gears - Passes power from idler gears to the wheels.
Planetary gears - Used between internal combustion engine and an electric motor to transmit power.

Applications

Marine Gears: Marine gears meet a wide variety of marine applications in a variety of configurations and installations to meet the most critical applications.

Specific marine applications
include main propulsion, centrifuges, deck machinery such as winches, windlasses, cranes,
 turning gears, pumps, elevators, and rudder carriers.

Applications

Mining Gears: Mining is a process of extracting ores or minerals from the earth's surface. The gears are used for increasing the torque applied on the tool used for mining. They are used for commercial gold production, and coal mining.

Differential Gear Box

http://www.howstuffworks.com/differential2.htm

SLIDING MESH GEARBOX

CONSTANT MESH GEARBOX

SYNCHROMESH GEARBOX

Dncitl VE INFINITEIIV VARIARI.F GEARBOX

INDUSTRIAL GEARBOX

DIFFERENTIAL GEARBOX

